
GitPython Documentation
Release 0.2.0 Beta

Michael Trier

November 19, 2014

Contents

1 Overview / Install 1
1.1 Requirements . 1
1.2 Installing GitPython . 1
1.3 Getting Started . 1
1.4 API Reference . 2
1.5 Source Code . 2
1.6 Mailing List . 2
1.7 Issue Tracker . 2
1.8 License Information . 2

2 GitPython Tutorial 3
2.1 Initialize a Repo object . 3
2.2 Examining References . 3
2.3 Modifying References . 4
2.4 Understanding Objects . 4
2.5 The Commit object . 5
2.6 The Tree object . 6
2.7 The Index Object . 7
2.8 Handling Remotes . 8
2.9 Obtaining Diff Information . 8
2.10 Switching Branches . 8
2.11 Using git directly . 9
2.12 And even more ... 9

3 API Reference 11
3.1 Actor . 11
3.2 Objects.Base . 11
3.3 Objects.Blob . 12
3.4 Objects.Commit . 12
3.5 Objects.Tag . 14
3.6 Objects.Tree . 14
3.7 Objects.Utils . 15
3.8 GitCmd . 16
3.9 Config . 17
3.10 Diff . 18
3.11 Errors . 19
3.12 Index . 19
3.13 Refs . 23

i

3.14 Remote . 28
3.15 Repo . 32
3.16 Stats . 36
3.17 Utils . 37

4 Roadmap 39

5 Indices and tables 41

Python Module Index 43

ii

CHAPTER 1

Overview / Install

GitPython is a python library used to interact with Git repositories.

GitPython was a port of the grit library in Ruby created by Tom Preston-Werner and Chris Wanstrath, but grew beyond
its heritage through its improved design and performance.

1.1 Requirements

• Git tested with 1.5.3.7

• Requires Git 1.6.5.4 or newer if index.add function is to be used

• Python Nose - used for running the tests

• Mock by Michael Foord used for tests. Requires 0.5

1.2 Installing GitPython

Installing GitPython is easily done using setuptools. Assuming it is installed, just run the following from the command-
line:

easy_install GitPython

This command will download the latest version of GitPython from the Python Package Index and install it to your
system. More information about easy_install and pypi can be found here:

• setuptools

• install setuptools

• pypi

Alternatively, you can install from the distribution using the setup.py script:

python setup.py install

1.3 Getting Started

• GitPython Tutorial - This tutorial provides a walk-through of some of the basic functionality and concepts used
in GitPython. It, however, is not exhaustive so you are encouraged to spend some time in the API Reference.

1

http://grit.rubyforge.org
http://git-scm.com/
http://git-scm.com/
http://code.google.com/p/python-nose/
http://www.voidspace.org.uk/python/mock.html
http://peak.telecommunity.com/DevCenter/setuptools
http://pypi.python.org/pypi/GitPython
http://peak.telecommunity.com/DevCenter/setuptools
http://peak.telecommunity.com/DevCenter/EasyInstall#installation-instructions
http://pypi.python.org/pypi/SQLAlchemy

GitPython Documentation, Release 0.2.0 Beta

1.4 API Reference

An organized section of the GitPthon API is at API Reference.

1.5 Source Code

GitPython’s git repo is available on Gitorious and GitHub, which can be browsed at:

• http://gitorious.org/projects/git-python/

• http://github.com/Byron/GitPython

and cloned using:

$ git clone git://gitorious.org/git-python/mainline.git git-python
$ git clone git://github.com/Byron/GitPython.git git-python

1.6 Mailing List

http://groups.google.com/group/git-python

1.7 Issue Tracker

http://byronimo.lighthouseapp.com/projects/51787-gitpython/milestones

1.8 License Information

GitPython is licensed under the New BSD License. See the LICENSE file for more information.

2 Chapter 1. Overview / Install

http://gitorious.org/projects/git-python/
http://github.com/Byron/GitPython
http://groups.google.com/group/git-python
http://byronimo.lighthouseapp.com/projects/51787-gitpython/milestones

CHAPTER 2

GitPython Tutorial

GitPython provides object model access to your git repository. This tutorial is composed of multiple sections, each of
which explain a real-life usecase.

2.1 Initialize a Repo object

The first step is to create a Repo object to represent your repository:

from git import *
repo = Repo("/Users/mtrier/Development/git-python")

In the above example, the directory /Users/mtrier/Development/git-python is my working repository
and contains the .git directory. You can also initialize GitPython with a bare repository:

repo = Repo.create("/var/git/git-python.git")

A repo object provides high-level access to your data, it allows you to create and delete heads, tags and remotes and
access the configuration of the repository:

repo.config_reader() # get a config reader for read-only access
repo.config_writer() # get a config writer to change configuration

Query the active branch, query untracked files or whether the repository data has been modified:

repo.is_dirty()
False
repo.untracked_files
[’my_untracked_file’]

Clone from existing repositories or initialize new empty ones:

cloned_repo = repo.clone("to/this/path")
new_repo = repo.init("path/for/new/repo")

Archive the repository contents to a tar file:

repo.archive(open("repo.tar",’w’))

2.2 Examining References

References are the tips of your commit graph from which you can easily examine the history of your project:

3

GitPython Documentation, Release 0.2.0 Beta

heads = repo.heads
master = heads.master # lists can be accessed by name for convenience
master.commit # the commit pointed to by head called master
master.rename("new_name") # rename heads

Tags are (usually immutable) references to a commit and/or a tag object:

tags = repo.tags
tagref = tags[0]
tagref.tag # tags may have tag objects carrying additional information
tagref.commit # but they always point to commits
repo.delete_tag(tagref) # delete or
repo.create_tag("my_tag") # create tags using the repo for convenience

A symbolic reference is a special case of a reference as it points to another reference instead of a commit:

head = repo.head # the head points to the active branch/ref
master = head.reference # retrieve the reference the head points to
master.commit # from here you use it as any other reference

2.3 Modifying References

You can easily create and delete reference types or modify where they point to:

repo.delete_head(’master’) # delete an existing head
master = repo.create_head(’master’) # create a new one
master.commit = ’HEAD~10’ # set branch to another commit without changing index or working tree

Create or delete tags the same way except you may not change them afterwards:

new_tag = repo.create_tag(’my_tag’, ’my message’)
repo.delete_tag(new_tag)

Change the symbolic reference to switch branches cheaply (without adjusting the index or the working copy):

new_branch = repo.create_head(’new_branch’)
repo.head.reference = new_branch

2.4 Understanding Objects

An Object is anything storable in git’s object database. Objects contain information about their type, their uncom-
pressed size as well as the actual data. Each object is uniquely identified by a SHA1 hash, being 40 hexadecimal
characters in size or 20 bytes in size.

Git only knows 4 distinct object types being Blobs, Trees, Commits and Tags.

In Git-Pyhton, all objects can be accessed through their common base, compared and hashed, as shown in the following
example:

hc = repo.head.commit
hct = hc.tree
hc != hct
hc != repo.tags[0]
hc == repo.head.reference.commit

Basic fields are:

4 Chapter 2. GitPython Tutorial

GitPython Documentation, Release 0.2.0 Beta

hct.type
’tree’
hct.size
166
hct.sha
’a95eeb2a7082212c197cabbf2539185ec74ed0e8’
hct.data # returns string with pure uncompressed data
’...’
len(hct.data) == hct.size

Index Objects are objects that can be put into git’s index. These objects are trees and blobs which additionally know
about their path in the filesystem as well as their mode:

hct.path # root tree has no path
’’
hct.trees[0].path # the first subdirectory has one though
’dir’
htc.mode # trees have mode 0
0
’%o’ % htc.blobs[0].mode # blobs have a specific mode though comparable to a standard linux fs
100644

Access blob data (or any object data) directly or using streams:

htc.data # binary tree data as string (inefficient)
htc.blobs[0].data_stream # stream object to read data from
htc.blobs[0].stream_data(my_stream) # write data to given stream

2.5 The Commit object

Commit objects contain information about a specific commit. Obtain commits using references as done in Examining
References or as follows.

Obtain commits at the specified revision:

repo.commit(’master’)
repo.commit(’v0.1’)
repo.commit(’HEAD~10’)

Iterate 100 commits:

repo.iter_commits(’master’, max_count=100)

If you need paging, you can specify a number of commits to skip:

repo.iter_commits(’master’, max_count=10, skip=20)

The above will return commits 21-30 from the commit list.:

headcommit = repo.head.commit

headcommit.sha
’207c0c4418115df0d30820ab1a9acd2ea4bf4431’

headcommit.parents
[<git.Commit "a91c45eee0b41bf3cdaad3418ca3850664c4a4b4">]

headcommit.tree

2.5. The Commit object 5

GitPython Documentation, Release 0.2.0 Beta

<git.Tree "563413aedbeda425d8d9dcbb744247d0c3e8a0ac">

headcommit.author
<git.Actor "Michael Trier <mtrier@gmail.com>">

headcommit.authored_date # seconds since epoch
1256291446

headcommit.committer
<git.Actor "Michael Trier <mtrier@gmail.com>">

headcommit.committed_date
1256291446

headcommit.message
’cleaned up a lot of test information. Fixed escaping so it works with
subprocess.’

Note: date time is represented in a seconds since epock format. Conversion to human readable form can be
accomplished with the various time module methods:

import time
time.asctime(time.gmtime(headcommit.committed_date))
’Wed May 7 05:56:02 2008’

time.strftime("%a, %d %b %Y %H:%M", time.gmtime(headcommit.committed_date))
’Wed, 7 May 2008 05:56’

You can traverse a commit’s ancestry by chaining calls to parents:

headcommit.parents[0].parents[0].parents[0]

The above corresponds to master^^^ or master~3 in git parlance.

2.6 The Tree object

A tree records pointers to the contents of a directory. Let’s say you want the root tree of the latest commit on the
master branch:

tree = repo.heads.master.commit.tree
<git.Tree "a006b5b1a8115185a228b7514cdcd46fed90dc92">

tree.sha
’a006b5b1a8115185a228b7514cdcd46fed90dc92’

Once you have a tree, you can get the contents:

tree.trees # trees are subdirectories
[<git.Tree "f7eb5df2e465ab621b1db3f5714850d6732cfed2">]

tree.blobs # blobs are files
[<git.Blob "a871e79d59cf8488cac4af0c8f990b7a989e2b53">,
<git.Blob "3594e94c04db171e2767224db355f514b13715c5">,
<git.Blob "e79b05161e4836e5fbf197aeb52515753e8d6ab6">,
<git.Blob "94954abda49de8615a048f8d2e64b5de848e27a1">]

Its useful to know that a tree behaves like a list with the ability to query entries by name:

6 Chapter 2. GitPython Tutorial

GitPython Documentation, Release 0.2.0 Beta

tree[0] == tree[’dir’] # access by index and by sub-path
<git.Tree "f7eb5df2e465ab621b1db3f5714850d6732cfed2">
for entry in tree: do_something_with(entry)

blob = tree[0][0]
blob.name
’file’
blob.path
’dir/file’
blob.abspath
’/Users/mtrier/Development/git-python/dir/file’
>>>tree[’dir/file’].sha == blob.sha

There is a convenience method that allows you to get a named sub-object from a tree with a syntax similar to how
paths are written in an unix system:

tree/"lib"
<git.Tree "c1c7214dde86f76bc3e18806ac1f47c38b2b7a30">
tree/"dir/file" == blob.sha

You can also get a tree directly from the repository if you know its name:

repo.tree()
<git.Tree "master">

repo.tree("c1c7214dde86f76bc3e18806ac1f47c38b2b7a30")
<git.Tree "c1c7214dde86f76bc3e18806ac1f47c38b2b7a30">
repo.tree(’0.1.6’)
<git.Tree "6825a94104164d9f0f5632607bebd2a32a3579e5">

As trees only allow direct access to their direct entries, use the traverse method to obtain an iterator to traverse entries
recursively:

tree.traverse()
<generator object at 0x7f6598bd65a8>
for entry in traverse(): do_something_with(entry)

2.7 The Index Object

The git index is the stage containing changes to be written with the next commit or where merges finally have to take
place. You may freely access and manipulate this information using the IndexFile Object:

index = repo.index

Access objects and add/remove entries. Commit the changes:

for stage,blob in index.iter_blobs(): do_something(...)
Access blob objects
for (path,stage),entry in index.entries.iteritems: pass
Access the entries directly
index.add([’my_new_file’]) # add a new file to the index
index.remove([’dir/existing_file’])
new_commit = index.commit("my commit message")

Create new indices from other trees or as result of a merge. Write that result to a new index:

2.7. The Index Object 7

GitPython Documentation, Release 0.2.0 Beta

tmp_index = Index.from_tree(repo, ’HEAD~1’) # load a tree into a temporary index
merge_index = Index.from_tree(repo, ’base’, ’HEAD’, ’some_branch’) # merge two trees three-way
merge_index.write("merged_index")

2.8 Handling Remotes

Remotes are used as alias for a foreign repository to ease pushing to and fetching from them:

test_remote = repo.create_remote(’test’, ’git@server:repo.git’)
repo.delete_remote(test_remote) # create and delete remotes
origin = repo.remotes.origin # get default remote by name
origin.refs # local remote references
o = origin.rename(’new_origin’) # rename remotes
o.fetch() # fetch, pull and push from and to the remote
o.pull()
o.push()

You can easily access configuration information for a remote by accessing options as if they where attributes:

o.url
’git@server:dummy_repo.git’

Change configuration for a specific remote only:

o.config_writer.set("pushurl", "other_url")

2.9 Obtaining Diff Information

Diffs can generally be obtained by Subclasses of Diffable as they provide the diff method. This operation yields
a DiffIndex allowing you to easily access diff information about paths.

Diffs can be made between the Index and Trees, Index and the working tree, trees and trees as well as trees and the
working copy. If commits are involved, their tree will be used implicitly:

hcommit = repo.head.commit
idiff = hcommit.diff() # diff tree against index
tdiff = hcommit.diff(’HEAD~1’) # diff tree against previous tree
wdiff = hcommit.diff(None) # diff tree against working tree

index = repo.index
index.diff() # diff index against itself yielding empty diff
index.diff(None) # diff index against working copy
index.diff(’HEAD’) # diff index against current HEAD tree

The item returned is a DiffIndex which is essentially a list of Diff objects. It provides additional filtering to ease
finding what you might be looking for:

for diff_added in wdiff.iter_change_type(’A’): do_something_with(diff_added)

2.10 Switching Branches

To switch between branches, you effectively need to point your HEAD to the new branch head and reset your index
and working copy to match. A simple manual way to do it is the following one:

8 Chapter 2. GitPython Tutorial

GitPython Documentation, Release 0.2.0 Beta

repo.head.reference = repo.heads.other_branch
repo.head.reset(index=True, working_tree=True)

The previous approach would brutally overwrite the user’s changes in the working copy and index though and is less
sophisticated than a git-checkout for instance which generally prevents you from destroying your work. Use the safer
approach as follows:

repo.heads.master.checkout() # checkout the branch using git-checkout
repo.heads.other_branch.checkout()

2.11 Using git directly

In case you are missing functionality as it has not been wrapped, you may conveniently use the git command directly.
It is owned by each repository instance:

git = repo.git
git.checkout(’head’, b="my_new_branch") # default command
git.for_each_ref() # ’-’ becomes ’_’ when calling it

The return value will by default be a string of the standard output channel produced by the command.

Keyword arguments translate to short and long keyword arguments on the commandline. The special notion
git.command(flag=True) will create a flag without value like command --flag.

If None is found in the arguments, it will be dropped silently. Lists and tuples passed as arguments will be unpacked
to individual arguments. Objects are converted to strings using the str(...) function.

2.12 And even more ...

There is more functionality in there, like the ability to archive repositories, get stats and logs, blame, and probably a
few other things that were not mentioned here.

Check the unit tests for an in-depth introduction on how each function is supposed to be used.

2.11. Using git directly 9

GitPython Documentation, Release 0.2.0 Beta

10 Chapter 2. GitPython Tutorial

CHAPTER 3

API Reference

3.1 Actor

class git.actor.Actor(name, email)
Actors hold information about a person acting on the repository. They can be committers and authors or anything
with a name and an email as mentioned in the git log entries.

name_email_regex = <_sre.SRE_Pattern object at 0x7fe75493e540>

name_only_regex = <_sre.SRE_Pattern object at 0x7fe7548b6310>

3.2 Objects.Base

class git.objects.base.IndexObject(repo, sha, mode=None, path=None)
Base for all objects that can be part of the index file , namely Tree, Blob and SubModule objects

abspath

Returns Absolute path to this index object in the file system (as opposed to the .path field which is a path
relative to the git repository).

The returned path will be native to the system and contains ‘’ on windows.

mode

name

Returns Name portion of the path, effectively being the basename

path

class git.objects.base.Object(repo, id)
Implements an Object which may be Blobs, Trees, Commits and Tags

This Object also serves as a constructor for instances of the correct type:

inst = Object.new(repo,id)
inst.sha # objects sha in hex
inst.size # objects uncompressed data size
inst.data # byte string containing the whole data of the object

NULL_HEX_SHA = ‘00’

TYPES = (‘blob’, ‘tree’, ‘commit’, ‘tag’)

11

GitPython Documentation, Release 0.2.0 Beta

data

data_stream

Returns File Object compatible stream to the uncompressed raw data of the object

classmethod new(repo, id)

Return New Object instance of a type appropriate to the object type behind id. The id of the newly created
object will be a hexsha even though the input id may have been a Reference or Rev-Spec

Note This cannot be a __new__ method as it would always call __init__ with the input id which is not
necessarily a hexsha.

repo

sha

size

stream_data(ostream)
Writes our data directly to the given output stream

ostream File object compatible stream object.

Returns self

type = None

3.3 Objects.Blob

class git.objects.blob.Blob(repo, sha, mode=None, path=None)
A Blob encapsulates a git blob object

DEFAULT_MIME_TYPE = ‘text/plain’

mime_type
The mime type of this file (based on the filename)

Returns str

NOTE Defaults to ‘text/plain’ in case the actual file type is unknown.

type = ‘blob’

3.4 Objects.Commit

class git.objects.commit.Commit(repo, sha, tree=None, author=None, authored_date=None, au-
thor_tz_offset=None, committer=None, committed_date=None,
committer_tz_offset=None, message=None, parents=None)

Wraps a git Commit object.

This class will act lazily on some of its attributes and will query the value on demand only if it involves calling
the git binary.

author

author_tz_offset

authored_date

committed_date

12 Chapter 3. API Reference

GitPython Documentation, Release 0.2.0 Beta

committer

committer_tz_offset

count(paths=’‘, **kwargs)
Count the number of commits reachable from this commit

paths is an optinal path or a list of paths restricting the return value to commits actually containing the
paths

kwargs Additional options to be passed to git-rev-list. They must not alter the ouput style of the com-
mand, or parsing will yield incorrect results

Returns int

classmethod create_from_tree(repo, tree, message, parent_commits=None, head=False)
Commit the given tree, creating a commit object.

repo is the Repo

tree Sha of a tree or a tree object to become the tree of the new commit

message Commit message. It may be an empty string if no message is provided. It will be converted to
a string in any case.

parent_commits Optional Commit objects to use as parents for the new commit. If empty list, the
commit will have no parents at all and become a root commit. If None , the current head commit will
be the parent of the new commit object

head If True, the HEAD will be advanced to the new commit automatically. Else the HEAD will remain
pointing on the previous commit. This could lead to undesired results when diffing files.

Returns Commit object representing the new commit

Note: Additional information about hte committer and Author are taken from the environment or from
the git configuration, see git-commit-tree for more information

classmethod iter_items(repo, rev, paths=’‘, **kwargs)
Find all commits matching the given criteria.

repo is the Repo

rev revision specifier, see git-rev-parse for viable options

paths is an optinal path or list of paths, if set only Commits that include the path or paths will be
considered

kwargs optional keyword arguments to git rev-list where max_count is the maximum number of com-
mits to fetch skip is the number of commits to skip since all commits since i.e. ‘1970-01-01’

Returns iterator yielding Commit items

iter_parents(paths=’‘, **kwargs)
Iterate _all_ parents of this commit.

paths Optional path or list of paths limiting the Commits to those that contain at least one of the paths

kwargs All arguments allowed by git-rev-list

Return: Iterator yielding Commit objects which are parents of self

message

name_rev

Returns String describing the commits hex sha based on the closest Reference. Mostly useful for UI
purposes

3.4. Objects.Commit 13

GitPython Documentation, Release 0.2.0 Beta

parents

stats
Create a git stat from changes between this commit and its first parent or from all changes done if this is
the very first commit.

Return git.Stats

summary

Returns First line of the commit message.

tree

type = ‘commit’

3.5 Objects.Tag

Module containing all object based types.

class git.objects.tag.TagObject(repo, sha, object=None, tag=None, tagger=None,
tagged_date=None, tagger_tz_offset=None, message=None)

Non-Lightweight tag carrying additional information about an object we are pointing to.

message

object

tag

tagged_date

tagger

tagger_tz_offset

type = ‘tag’

3.6 Objects.Tree

class git.objects.tree.Tree(repo, sha, mode=0, path=None)
Tress represent a ordered list of Blobs and other Trees. Hence it can be accessed like a list.

Tree’s will cache their contents after first retrieval to improve efficiency.

Tree as a list:

Access a specific blob using the
tree[’filename’] notation.

You may as well access by index
blob = tree[0]

blob_id = 8

blobs

Returns list(Blob, ...) list of blobs directly below this tree

commit_id = 14

symlink_id = 10

14 Chapter 3. API Reference

GitPython Documentation, Release 0.2.0 Beta

traverse(predicate=<function <lambda> at 0x7fe7548626e0>, prune=<function <lambda> at
0x7fe754862758>, depth=-1, branch_first=True, visit_once=False, ignore_self=1)

For documentation, see utils.Traversable.traverse

Trees are set to visist_once = False to gain more performance in the traversal

tree_id = 4

trees

Returns list(Tree, ...) list of trees directly below this tree

type = ‘tree’

git.objects.tree.sha_to_hex(sha)
Takes a string and returns the hex of the sha within

3.7 Objects.Utils

Module for general utility functions

class git.objects.utils.ProcessStreamAdapter(process, stream_name)
Class wireing all calls to the contained Process instance.

Use this type to hide the underlying process to provide access only to a specified stream. The process is usually
wrapped into an AutoInterrupt class to kill it if the instance goes out of scope.

class git.objects.utils.Traversable
Simple interface to perforam depth-first or breadth-first traversals into one direction. Subclasses only need to
implement one function. Instances of the Subclass must be hashable

traverse(predicate=<function <lambda> at 0x7fe7548c46e0>, prune=<function <lambda>
at 0x7fe7548c4758>, depth=-1, branch_first=True, visit_once=True, ignore_self=1,
as_edge=False)

Returns iterator yieling of items found when traversing self

predicate f(i,d) returns False if item i at depth d should not be included in the result

prune f(i,d) return True if the search should stop at item i at depth d. Item i will not be returned.

depth define at which level the iteration should not go deeper if -1, there is no limit if 0, you would
effectively only get self, the root of the iteration i.e. if 1, you would only get the first level of pre-
dessessors/successors

branch_first if True, items will be returned branch first, otherwise depth first

visit_once if True, items will only be returned once, although they might be encountered several
times. Loops are prevented that way.

ignore_self if True, self will be ignored and automatically pruned from the result. Otherwise it will
be the first item to be returned. If as_edge is True, the source of the first edge is None

as_edge if True, return a pair of items, first being the source, second the destinatination, i.e. tuple(src,
dest) with the edge spanning from source to destination

git.objects.utils.get_object_type_by_name(object_type_name)

Returns type suitable to handle the given object type name. Use the type to create new instances.

object_type_name Member of TYPES

Raises ValueError: In case object_type_name is unknown

3.7. Objects.Utils 15

GitPython Documentation, Release 0.2.0 Beta

git.objects.utils.parse_actor_and_date(line)
Parse out the actor (author or committer) info from a line like:

author Tom Preston-Werner <tom@mojombo.com> 1191999972 -0700

Returns [Actor, int_seconds_since_epoch, int_timezone_offset]

3.8 GitCmd

class git.cmd.Git(working_dir=None)
The Git class manages communication with the Git binary.

It provides a convenient interface to calling the Git binary, such as in:

g = Git(git_dir)
g.init() # calls ’git init’ program
rval = g.ls_files() # calls ’git ls-files’ program

Debugging Set the GIT_PYTHON_TRACE environment variable print each invocation of the command to
stdout. Set its value to ‘full’ to see details about the returned values.

class AutoInterrupt(proc, args)
Kill/Interrupt the stored process instance once this instance goes out of scope. It is used to prevent pro-
cesses piling up in case iterators stop reading. Besides all attributes are wired through to the contained
process object.

The wait method was overridden to perform automatic status code checking and possibly raise.

args

proc

wait()
Wait for the process and return its status code.
Raise GitCommandError if the return status is not 0

Git.cat_file_all

Git.cat_file_header

Git.clear_cache()
Clear all kinds of internal caches to release resources.

Currently persistent commands will be interrupted.

Returns self

Git.execute(command, istream=None, with_keep_cwd=False, with_extended_output=False,
with_exceptions=True, as_process=False, output_stream=None)

Handles executing the command on the shell and consumes and returns the returned information (stdout)

command The command argument list to execute. It should be a string, or a sequence of program argu-
ments. The program to execute is the first item in the args sequence or string.

istream Standard input filehandle passed to subprocess.Popen.

with_keep_cwd Whether to use the current working directory from os.getcwd(). The cmd otherwise
uses its own working_dir that it has been initialized with if possible.

with_extended_output Whether to return a (status, stdout, stderr) tuple.

16 Chapter 3. API Reference

GitPython Documentation, Release 0.2.0 Beta

with_exceptions Whether to raise an exception when git returns a non-zero status.

as_process Whether to return the created process instance directly from which streams can be read
on demand. This will render with_extended_output and with_exceptions ineffective - the caller will
have to deal with the details himself. It is important to note that the process will be placed into
an AutoInterrupt wrapper that will interrupt the process once it goes out of scope. If you use the
command in iterators, you should pass the whole process instance instead of a single stream.

output_stream If set to a file-like object, data produced by the git command will be output to the
given stream directly. This feature only has any effect if as_process is False. Processes will always be
created with a pipe due to issues with subprocess. This merely is a workaround as data will be copied
from the output pipe to the given output stream directly.

Returns:

str(output) # extended_output = False (Default)
tuple(int(status), str(stdout), str(stderr)) # extended_output = True

if ouput_stream is True, the stdout value will be your output stream:
output_stream # extended_output = False
tuple(int(status), output_stream, str(stderr))# extended_output = True

Raise GitCommandError

NOTE If you add additional keyword arguments to the signature of this method, you must update the
execute_kwargs tuple housed in this module.

Git.get_object_data(ref)
As get_object_header, but returns object data as well

Return: (hexsha, type_string, size_as_int,data_string)

Git.get_object_header(ref)
Use this method to quickly examine the type and size of the object behind the given ref.

NOTE The method will only suffer from the costs of command invocation once and reuses the command
in subsequent calls.

Return: (hexsha, type_string, size_as_int)

Git.transform_kwargs(**kwargs)
Transforms Python style kwargs into git command line options.

Git.working_dir

Returns Git directory we are working on

git.cmd.dashify(string)

3.9 Config

Module containing module parser implementation able to properly read and write configuration files

git.config.GitConfigParser
alias of write

3.9. Config 17

GitPython Documentation, Release 0.2.0 Beta

3.10 Diff

class git.diff.Diff(repo, a_path, b_path, a_blob_id, b_blob_id, a_mode, b_mode, new_file, deleted_file,
rename_from, rename_to, diff)

A Diff contains diff information between two Trees.

It contains two sides a and b of the diff, members are prefixed with “a” and “b” respectively to inidcate that.

Diffs keep information about the changed blob objects, the file mode, renames, deletions and new files.

There are a few cases where None has to be expected as member variable value:

New File:

a_mode is None
a_blob is None

Deleted File:

b_mode is None
b_blob is None

Working Tree Blobs

When comparing to working trees, the working tree blob will have a null hexsha as a corresponding
object does not yet exist. The mode will be null as well. But the path will be available though. If it
is listed in a diff the working tree version of the file must be different to the version in the index or
tree, and hence has been modified.

a_blob

a_mode

b_blob

b_mode

deleted_file

diff

new_file

null_hex_sha = ‘00’

re_header = <_sre.SRE_Pattern object at 0x28e2cd0>

rename_from

rename_to

renamed

Returns: True if the blob of our diff has been renamed

class git.diff.DiffIndex
Implements an Index for diffs, allowing a list of Diffs to be queried by the diff properties.

The class improves the diff handling convenience

change_type = (‘A’, ‘D’, ‘R’, ‘M’)

iter_change_type(change_type)

Return iterator yieling Diff instances that match the given change_type

18 Chapter 3. API Reference

GitPython Documentation, Release 0.2.0 Beta

change_type Member of DiffIndex.change_type, namely

‘A’ for added paths

‘D’ for deleted paths

‘R’ for renamed paths

‘M’ for paths with modified data

class git.diff.Diffable
Common interface for all object that can be diffed against another object of compatible type.

NOTE: Subclasses require a repo member as it is the case for Object instances, for practical reasons we do not
derive from Object.

class Index

Diffable.diff(other=<class ‘git.diff.Index’>, paths=None, create_patch=False, **kwargs)
Creates diffs between two items being trees, trees and index or an index and the working tree.

other Is the item to compare us with. If None, we will be compared to the working tree. If Treeish, it
will be compared against the respective tree If Index (type), it will be compared against the index. It
defaults to Index to assure the method will not by-default fail on bare repositories.

paths is a list of paths or a single path to limit the diff to. It will only include at least one of the givne
path or paths.

create_patch If True, the returned Diff contains a detailed patch that if applied makes the self to
other. Patches are somwhat costly as blobs have to be read and diffed.

kwargs Additional arguments passed to git-diff, such as R=True to swap both sides of the diff.

Returns git.DiffIndex

Note Rename detection will only work if create_patch is True.

On a bare repository, ‘other’ needs to be provided as Index or as as Tree/Commit, or a git command
error will occour

3.11 Errors

Module containing all exceptions thrown througout the git package,

exception git.errors.GitCommandError(command, status, stderr=None)
Thrown if execution of the git command fails with non-zero status code.

exception git.errors.InvalidGitRepositoryError
Thrown if the given repository appears to have an invalid format.

exception git.errors.NoSuchPathError
Thrown if a path could not be access by the system.

3.12 Index

Module containing Index implementation, allowing to perform all kinds of index manipulations such as querying and
merging.

3.11. Errors 19

GitPython Documentation, Release 0.2.0 Beta

class git.index.BaseIndexEntry
Small Brother of an index entry which can be created to describe changes done to the index in which case plenty
of additional information is not requried.

As the first 4 data members match exactly to the IndexEntry type, methods expecting a BaseIndexEntry can also
handle full IndexEntries even if they use numeric indices for performance reasons.

classmethod from_blob(blob, stage=0)

Returns Fully equipped BaseIndexEntry at the given stage

mode
File Mode, compatible to stat module constants

path

sha
hex sha of the blob

stage

Stage of the entry, either: 0 = default stage 1 = stage before a merge or common ancestor entry in case
of a 3 way merge 2 = stage of entries from the ‘left’ side of the merge 3 = stage of entries from the
right side of the merge

Note: For more information, see http://www.kernel.org/pub/software/scm/git/docs/git-read-tree.html

class git.index.BlobFilter(paths)
Predicate to be used by iter_blobs allowing to filter only return blobs which match the given list of directories
or files.

The given paths are given relative to the repository.

paths

exception git.index.CheckoutError(message, failed_files, valid_files, failed_reasons)
Thrown if a file could not be checked out from the index as it contained changes.

The .failed_files attribute contains a list of relative paths that failed to be checked out as they contained changes
that did not exist in the index.

The .failed_reasons attribute contains a string informing about the actual cause of the issue.

The .valid_files attribute contains a list of relative paths to files that were checked out successfully and hence
match the version stored in the index

class git.index.IndexEntry
Allows convenient access to IndexEntry data without completely unpacking it.

Attributes usully accessed often are cached in the tuple whereas others are unpacked on demand.

See the properties for a mapping between names and tuple indices.

ctime

Returns Tuple(int_time_seconds_since_epoch, int_nano_seconds) of the file’s creation time

dev
Device ID

classmethod from_base(base)

Returns Minimal entry as created from the given BaseIndexEntry instance. Missing values will be set to
null-like values

base Instance of type BaseIndexEntry

20 Chapter 3. API Reference

http://www.kernel.org/pub/software/scm/git/docs/git-read-tree.html

GitPython Documentation, Release 0.2.0 Beta

classmethod from_blob(blob)

Returns Minimal entry resembling the given blob objecft

gid
Group ID

inode
Inode ID

mtime
See ctime property, but returns modification time

size
Uncompressed size of the blob

Note Will be 0 if the stage is not 0 (hence it is an unmerged entry)

uid
User ID

class git.index.IndexFile(repo, file_path=None)
Implements an Index that can be manipulated using a native implementation in order to save git command
function calls wherever possible.

It provides custom merging facilities allowing to merge without actually changing your index or your working
tree. This way you can perform own test-merges based on the index only without having to deal with the working
copy. This is useful in case of partial working trees.

Entries The index contains an entries dict whose keys are tuples of type IndexEntry to facilitate access.

You may read the entries dict or manipulate it using IndexEntry instance, i.e.::
index.entries[index.get_entries_key(index_entry_instance)] = index_entry_instance

Otherwise changes to it will be lost when changing the index using its methods.

S_IFGITLINK = 57344

add(*args, **kwargs)

checkout(*args, **kwargs)

commit(*args, **kwargs)

diff(*args, **kwargs)

entries

classmethod from_tree(repo, *treeish, **kwargs)
Merge the given treeish revisions into a new index which is returned. The original index will remain
unaltered

repo The repository treeish are located in.

*treeish One, two or three Tree Objects or Commits. The result changes according to the amount of
trees. If 1 Tree is given, it will just be read into a new index If 2 Trees are given, they will be merged
into a new index using a

two way merge algorithm. Tree 1 is the ‘current’ tree, tree 2 is the ‘other’ one. It behaves like
a fast-forward. If 3 Trees are given, a 3-way merge will be performed with the first tree being
the common ancestor of tree 2 and tree 3. Tree 2 is the ‘current’ tree, tree 3 is the ‘other’ one

**kwargs Additional arguments passed to git-read-tree

Returns New IndexFile instance. It will point to a temporary index location which does not exist anymore.
If you intend to write such a merged Index, supply an alternate file_path to its ‘write’ method.

3.12. Index 21

GitPython Documentation, Release 0.2.0 Beta

Note: In the three-way merge case, –aggressive will be specified to automatically resolve more cases in a
commonly correct manner. Specify trivial=True as kwarg to override that.

As the underlying git-read-tree command takes into account the current index, it will be temporarily
moved out of the way to assure there are no unsuspected interferences.

classmethod get_entries_key(*entry)

Returns Key suitable to be used for the index.entries dictionary

entry One instance of type BaseIndexEntry or the path and the stage

iter_blobs(predicate=<function <lambda> at 0x7fe754818668>)

Returns Iterator yielding tuples of Blob objects and stages, tuple(stage, Blob)

predicate Function(t) returning True if tuple(stage, Blob) should be yielded by the iterator. A default
filter, the BlobFilter, allows you to yield blobs only if they match a given list of paths.

merge_tree(*args, **kwargs)

move(*args, **kwargs)

path

Returns Path to the index file we are representing

remove(*args, **kwargs)

repo

reset(*args, **kwargs)

resolve_blobs(iter_blobs)
Resolve the blobs given in blob iterator. This will effectively remove the index entries of the respective
path at all non-null stages and add the given blob as new stage null blob.

For each path there may only be one blob, otherwise a ValueError will be raised claiming the path is
already at stage 0.

Raise ValueError if one of the blobs already existed at stage 0

Returns: self

Note You will have to write the index manually once you are done, i.e. index.resolve_blobs(blobs).write()

unmerged_blobs()

Returns Iterator yielding dict(path : list(tuple(stage, Blob, ...))), being a dictionary associating a path in
the index with a list containing sorted stage/blob pairs

Note: Blobs that have been removed in one side simply do not exist in the given stage. I.e. a file removed
on the ‘other’ branch whose entries are at stage 3 will not have a stage 3 entry.

update()
Reread the contents of our index file, discarding all cached information we might have.

Note: This is a possibly dangerious operations as it will discard your changes to index.entries

Returns self

version

write(file_path=None, ignore_tree_extension_data=False)
Write the current state to our file path or to the given one

22 Chapter 3. API Reference

GitPython Documentation, Release 0.2.0 Beta

file_path If None, we will write to our stored file path from which we have been initialized. Otherwise
we write to the given file path. Please note that this will change the file_path of this index to the one
you gave.

ignore_tree_extension_data If True, the TREE type extension data read in the index will not be
written to disk. Use this if you have altered the index and would like to use git-write-tree afterwards
to create a tree representing your written changes. If this data is present in the written index, git-write-
tree will instead write the stored/cached tree. Alternatively, use IndexFile.write_tree() to handle this
case automatically

Returns self

Note Index writing based on the dulwich implementation

write_tree(missing_ok=False)
Writes the Index in self to a corresponding Tree file into the repository object database and returns it as
corresponding Tree object.

missing_ok If True, missing objects referenced by this index will not result in an error.

Returns Tree object representing this index

git.index.clear_cache(func)
Decorator for functions that alter the index using the git command. This would invalidate our possibly existing
entries dictionary which is why it must be deleted to allow it to be lazily reread later.

Note This decorator will not be required once all functions are implemented natively which in fact is possible,
but probably not feasible performance wise.

git.index.default_index(func)
Decorator assuring the wrapped method may only run if we are the default repository index. This is as we rely
on git commands that operate on that index only.

3.13 Refs

Module containing all ref based objects

class git.refs.HEAD(repo, path=’HEAD’)
Special case of a Symbolic Reference as it represents the repository’s HEAD reference.

reset(commit=’HEAD’, index=True, working_tree=False, paths=None, **kwargs)
Reset our HEAD to the given commit optionally synchronizing the index and working tree. The reference
we refer to will be set to commit as well.

commit Commit object, Reference Object or string identifying a revision we should reset HEAD to.

index If True, the index will be set to match the given commit. Otherwise it will not be touched.

working_tree If True, the working tree will be forcefully adjusted to match the given commit, possibly
overwriting uncommitted changes without warning. If working_tree is True, index must be true as
well

paths Single path or list of paths relative to the git root directory that are to be reset. This allow to
partially reset individual files.

kwargs Additional arguments passed to git-reset.

Returns self

class git.refs.Head(repo, path)
A Head is a named reference to a Commit. Every Head instance contains a name and a Commit object.

3.13. Refs 23

GitPython Documentation, Release 0.2.0 Beta

Examples:

>>> repo = Repo("/path/to/repo")
>>> head = repo.heads[0]

>>> head.name
’master’

>>> head.commit
<git.Commit "1c09f116cbc2cb4100fb6935bb162daa4723f455">

>>> head.commit.sha
’1c09f116cbc2cb4100fb6935bb162daa4723f455’

checkout(force=False, **kwargs)
Checkout this head by setting the HEAD to this reference, by updating the index to reflect the tree we point
to and by updating the working tree to reflect the latest index.

The command will fail if changed working tree files would be overwritten.

force If True, changes to the index and the working tree will be discarded. If False, GitCommandError
will be raised in that situation.

**kwargs Additional keyword arguments to be passed to git checkout, i.e. b=’new_branch’ to create a
new branch at the given spot.

Returns The active branch after the checkout operation, usually self unless a new branch has been created.

Note By default it is only allowed to checkout heads - everything else will leave the HEAD detached
which is allowed and possible, but remains a special state that some tools might not be able to handle.

classmethod create(repo, path, commit=’HEAD’, force=False, **kwargs)
Create a new head. repo

Repository to create the head in

path The name or path of the head, i.e. ‘new_branch’ or feature/feature1. The prefix refs/heads is
implied.

commit Commit to which the new head should point, defaults to the current HEAD

force if True, force creation even if branch with that name already exists.

**kwargs Additional keyword arguments to be passed to git-branch, i.e. track, no-track, l

Returns Newly created Head

Note This does not alter the current HEAD, index or Working Tree

classmethod delete(repo, *heads, **kwargs)
Delete the given heads

force If True, the heads will be deleted even if they are not yet merged into the main development
stream. Default False

rename(new_path, force=False)
Rename self to a new path

new_path Either a simple name or a path, i.e. new_name or features/new_name. The prefix refs/heads
is implied

force If True, the rename will succeed even if a head with the target name already exists.

Returns self

24 Chapter 3. API Reference

GitPython Documentation, Release 0.2.0 Beta

Note respects the ref log as git commands are used

class git.refs.Reference(repo, path)
Represents a named reference to any object. Subclasses may apply restrictions though, i.e. Heads can only point
to commits.

classmethod create(repo, path, commit=’HEAD’, force=False)
Create a new reference. repo

Repository to create the reference in

path The relative path of the reference, i.e. ‘new_branch’ or feature/feature1. The path prefix ‘refs/’ is
implied if not given explicitly

commit Commit to which the new reference should point, defaults to the current HEAD

force if True, force creation even if a reference with that name already exists. Raise OSError otherwise

Returns Newly created Reference

Note This does not alter the current HEAD, index or Working Tree

classmethod iter_items(repo, common_path=None)
Equivalent to SymbolicReference.iter_items, but will return non-detached references as well.

name

Returns (shortest) Name of this reference - it may contain path components

object
Return the object our ref currently refers to

class git.refs.RemoteReference(repo, path)
Represents a reference pointing to a remote head.

classmethod delete(repo, *refs, **kwargs)
Delete the given remote references.

Note kwargs are given for compatability with the base class method as we should not narrow the signature.

remote_head

Returns Name of the remote head itself, i.e. master.

NOTE: The returned name is usually not qualified enough to uniquely identify a branch

remote_name

Returns Name of the remote we are a reference of, such as ‘origin’ for a reference named ‘origin/master’

class git.refs.SymbolicReference(repo, path)
Represents a special case of a reference such that this reference is symbolic. It does not point to a specific
commit, but to another Head, which itself specifies a commit.

A typical example for a symbolic reference is HEAD.

commit
Query or set commits directly

classmethod create(repo, path, reference=’HEAD’, force=False)
Create a new symbolic reference, hence a reference pointing to another reference. repo

Repository to create the reference in

3.13. Refs 25

GitPython Documentation, Release 0.2.0 Beta

path full path at which the new symbolic reference is supposed to be created at, i.e. “NEW_HEAD” or
“symrefs/my_new_symref”

reference The reference to which the new symbolic reference should point to

force if True, force creation even if a symbolic reference with that name already exists. Raise OSError
otherwise

Returns Newly created symbolic Reference

Raises OSError If a (Symbolic)Reference with the same name but different contents already exists.

Note This does not alter the current HEAD, index or Working Tree

classmethod delete(repo, path)
Delete the reference at the given path

repo Repository to delete the reference from

path Short or full path pointing to the reference, i.e. refs/myreference or just “myreference”, hence
‘refs/’ is implied. Alternatively the symbolic reference to be deleted

classmethod from_path(repo, path)

Return Instance of type Reference, Head, or Tag depending on the given path

is_detached

Returns True if we are a detached reference, hence we point to a specific commit instead to another
reference

is_valid()

Returns True if the reference is valid, hence it can be read and points to a valid object or reference.

classmethod iter_items(repo, common_path=None)
Find all refs in the repository

repo is the Repo

common_path Optional keyword argument to the path which is to be shared by all returned Ref ob-
jects. Defaults to class specific portion if None assuring that only refs suitable for the actual class are
returned.

Returns git.SymbolicReference[], each of them is guaranteed to be a symbolic ref which is not detached.

List is lexigraphically sorted The returned objects represent actual subclasses, such as Head or TagRef-
erence

name

Returns In case of symbolic references, the shortest assumable name is the path itself.

path

ref
Returns the Reference we point to

reference
Returns the Reference we point to

rename(new_path, force=False)
Rename self to a new path

26 Chapter 3. API Reference

GitPython Documentation, Release 0.2.0 Beta

new_path Either a simple name or a full path, i.e. new_name or features/new_name. The prefix refs/
is implied for references and will be set as needed. In case this is a symbolic ref, there is no implied
prefix

force If True, the rename will succeed even if a head with the target name already exists. It will be
overwritten in that case

Returns self

Raises OSError: In case a file at path but a different contents already exists

repo

classmethod to_full_path(path)

Returns string with a full path name which can be used to initialize

a Reference instance, for instance by using Reference.from_path

git.refs.Tag
alias of TagReference

class git.refs.TagReference(repo, path)
Class representing a lightweight tag reference which either points to a commit ,a tag object or any other object.
In the latter case additional information, like the signature or the tag-creator, is available.

This tag object will always point to a commit object, but may carray additional information in a tag object:

tagref = TagReference.list_items(repo)[0]
print tagref.commit.message
if tagref.tag is not None:

print tagref.tag.message

commit

Returns Commit object the tag ref points to

classmethod create(repo, path, ref=’HEAD’, message=None, force=False, **kwargs)
Create a new tag reference.

path The name of the tag, i.e. 1.0 or releases/1.0. The prefix refs/tags is implied

ref A reference to the object you want to tag. It can be a commit, tree or blob.

message If not None, the message will be used in your tag object. This will also create an additional tag
object that allows to obtain that information, i.e.:

tagref.tag.message

force If True, to force creation of a tag even though that tag already exists.

**kwargs Additional keyword arguments to be passed to git-tag

Returns A new TagReference

classmethod delete(repo, *tags)
Delete the given existing tag or tags

tag

Returns Tag object this tag ref points to or None in case we are a light weight tag

3.13. Refs 27

GitPython Documentation, Release 0.2.0 Beta

3.14 Remote

Module implementing a remote object allowing easy access to git remotes

class git.remote.FetchInfo(ref, flags, note=’‘, old_commit=None)
Carries information about the results of a fetch operation of a single head:

info = remote.fetch()[0]
info.ref # Symbolic Reference or RemoteReference to the changed

remote head or FETCH_HEAD
info.flags # additional flags to be & with enumeration members,

i.e. info.flags & info.REJECTED
is 0 if ref is SymbolicReference

info.note # additional notes given by git-fetch intended for the user
info.old_commit # if info.flags & info.FORCED_UPDATE|info.FAST_FORWARD,

field is set to the previous location of ref, otherwise None

ERROR = 128

FAST_FORWARD = 64

FORCED_UPDATE = 32

HEAD_UPTODATE = 4

NEW_HEAD = 2

NEW_TAG = 1

REJECTED = 16

TAG_UPDATE = 8

commit

Returns Commit of our remote ref

flags

name

Returns Name of our remote ref

note

old_commit

re_fetch_result = <_sre.SRE_Pattern object at 0x2859790>

ref

x = 7

class git.remote.PushInfo(flags, local_ref, remote_ref_string, remote, old_commit=None, sum-
mary=’‘)

Carries information about the result of a push operation of a single head:

info = remote.push()[0]
info.flags # bitflags providing more information about the result
info.local_ref # Reference pointing to the local reference that was pushed

It is None if the ref was deleted.
info.remote_ref_string # path to the remote reference located on the remote side
info.remote_ref # Remote Reference on the local side corresponding to

the remote_ref_string. It can be a TagReference as well.
info.old_commit # commit at which the remote_ref was standing before we pushed

28 Chapter 3. API Reference

GitPython Documentation, Release 0.2.0 Beta

it to local_ref.commit. Will be None if an error was indicated
info.summary # summary line providing human readable english text about the push

DELETED = 64

ERROR = 1024

FAST_FORWARD = 256

FORCED_UPDATE = 128

NEW_HEAD = 2

NEW_TAG = 1

NO_MATCH = 4

REJECTED = 8

REMOTE_FAILURE = 32

REMOTE_REJECTED = 16

UP_TO_DATE = 512

flags

local_ref

old_commit

remote_ref

Returns Remote Reference or TagReference in the local repository corresponding to the re-
mote_ref_string kept in this instance.

remote_ref_string

summary

x = 10

class git.remote.Remote(repo, name)
Provides easy read and write access to a git remote.

Everything not part of this interface is considered an option for the current remote, allowing constructs like
remote.pushurl to query the pushurl.

NOTE: When querying configuration, the configuration accessor will be cached to speed up subsequent accesses.

classmethod add(repo, name, url, **kwargs)
Create a new remote to the given repository repo

Repository instance that is to receive the new remote

name Desired name of the remote

url URL which corresponds to the remote’s name

**kwargs Additional arguments to be passed to the git-remote add command

Returns New Remote instance

Raise GitCommandError in case an origin with that name already exists

config_reader

3.14. Remote 29

GitPython Documentation, Release 0.2.0 Beta

Returns GitConfigParser compatible object able to read options for only our remote. Hence you may
simple type config.get(“pushurl”) to obtain the information

config_writer

Return GitConfigParser compatible object able to write options for this remote.

Note You can only own one writer at a time - delete it to release the configuration file and make it useable
by others.

To assure consistent results, you should only query options through the writer. Once you are done
writing, you are free to use the config reader once again.

classmethod create(repo, name, url, **kwargs)
Create a new remote to the given repository repo

Repository instance that is to receive the new remote

name Desired name of the remote

url URL which corresponds to the remote’s name

**kwargs Additional arguments to be passed to the git-remote add command

Returns New Remote instance

Raise GitCommandError in case an origin with that name already exists

fetch(refspec=None, progress=None, **kwargs)
Fetch the latest changes for this remote

refspec A “refspec” is used by fetch and push to describe the mapping between remote ref and lo-
cal ref. They are combined with a colon in the format <src>:<dst>, preceded by an optional plus
sign, +. For example: git fetch $URL refs/heads/master:refs/heads/origin means “grab the mas-
ter branch head from the $URL and store it as my origin branch head”. And git push $URL
refs/heads/master:refs/heads/to-upstream means “publish my master branch head as to-upstream
branch at $URL”. See also git-push(1).

Taken from the git manual

progress See ‘push’ method

**kwargs Additional arguments to be passed to git-fetch

Returns IterableList(FetchInfo, ...) list of FetchInfo instances providing detailed information about the
fetch results

Note As fetch does not provide progress information to non-ttys, we cannot make it available here unfor-
tunately as in the ‘push’ method.

classmethod iter_items(repo)

Returns Iterator yielding Remote objects of the given repository

name

pull(refspec=None, progress=None, **kwargs)
Pull changes from the given branch, being the same as a fetch followed by a merge of branch with your
local branch.

refspec see ‘fetch’ method

progress see ‘push’ method

**kwargs Additional arguments to be passed to git-pull

30 Chapter 3. API Reference

GitPython Documentation, Release 0.2.0 Beta

Returns Please see ‘fetch’ method

push(refspec=None, progress=None, **kwargs)
Push changes from source branch in refspec to target branch in refspec.

refspec see ‘fetch’ method

progress Instance of type RemoteProgress allowing the caller to receive progress information until the
method returns. If None, progress information will be discarded

**kwargs Additional arguments to be passed to git-push

Returns IterableList(PushInfo, ...) iterable list of PushInfo instances, each one informing about an indi-
vidual head which had been updated on the remote side. If the push contains rejected heads, these
will have the PushInfo.ERROR bit set in their flags. If the operation fails completely, the length of the
returned IterableList will be null.

refs

Returns IterableList of RemoteReference objects. It is prefixed, allowing you to omit the remote path
portion, i.e.:

remote.refs.master # yields RemoteReference(’/refs/remotes/origin/master’)

classmethod remove(repo, name)
Remove the remote with the given name

rename(new_name)
Rename self to the given new_name

Returns self

repo

classmethod rm(repo, name)
Remove the remote with the given name

stale_refs

Returns IterableList RemoteReference objects that do not have a corresponding head in the remote ref-
erence anymore as they have been deleted on the remote side, but are still available locally.

The IterableList is prefixed, hence the ‘origin’ must be omitted. See ‘refs’ property for an example.

update(**kwargs)
Fetch all changes for this remote, including new branches which will be forced in (in case your local
remote branch is not part the new remote branches ancestry anymore).

kwargs Additional arguments passed to git-remote update

Returns self

class git.remote.RemoteProgress
Handler providing an interface to parse progress information emitted by git-push and git-fetch and to dispatch
callbacks allowing subclasses to react to the progress.

BEGIN = 1

COMPRESSING = 8

COUNTING = 4

END = 2

OP_MASK = 28

3.14. Remote 31

GitPython Documentation, Release 0.2.0 Beta

STAGE_MASK = 3

WRITING = 16

line_dropped(line)
Called whenever a line could not be understood and was therefore dropped.

re_op_absolute = <_sre.SRE_Pattern object at 0x7fe754853750>

re_op_relative = <_sre.SRE_Pattern object at 0x28e8960>

update(op_code, cur_count, max_count=None, message=’‘)
Called whenever the progress changes

op_code Integer allowing to be compared against Operation IDs and stage IDs.

Stage IDs are BEGIN and END. BEGIN will only be set once for each Operation ID as well as END.
It may be that BEGIN and END are set at once in case only one progress message was emitted due to
the speed of the operation. Between BEGIN and END, none of these flags will be set

Operation IDs are all held within the OP_MASK. Only one Operation ID will be active per call.

cur_count Current absolute count of items

max_count The maximum count of items we expect. It may be None in case there is no maximum
number of items or if it is (yet) unknown.

message In case of the ‘WRITING’ operation, it contains the amount of bytes transferred. It may
possibly be used for other purposes as well.

You may read the contents of the current line in self._cur_line

x = 4

3.15 Repo

class git.repo.Repo(path=None)
Represents a git repository and allows you to query references, gather commit information, generate diffs, create
and clone repositories query the log.

The following attributes are worth using:

‘working_dir’ is the working directory of the git command, wich is the working tree directory if available or the
.git directory in case of bare repositories

‘working_tree_dir’ is the working tree directory, but will raise AssertionError if we are a bare repository.

‘git_dir’ is the .git repository directoy, which is always set.

DAEMON_EXPORT_FILE = ‘git-daemon-export-ok’

active_branch
The name of the currently active branch.

Returns Head to the active branch

alternates
Retrieve a list of alternates paths or set a list paths to be used as alternates

archive(ostream, treeish=None, prefix=None, **kwargs)
Archive the tree at the given revision. ostream

file compatible stream object to which the archive will be written

32 Chapter 3. API Reference

GitPython Documentation, Release 0.2.0 Beta

treeish is the treeish name/id, defaults to active branch

prefix is the optional prefix to prepend to each filename in the archive

kwargs Additional arguments passed to git-archive NOTE: Use the ‘format’ argument to define the kind
of format. Use specialized ostreams to write any format supported by python

Examples:

>>> repo.archive(open("archive"))
<String containing tar.gz archive>

Raise GitCommandError in case something went wrong

Returns self

bare

Returns True if the repository is bare

blame(rev, file)
The blame information for the given file at the given revision.

rev revision specifier, see git-rev-parse for viable options.

Returns list: [git.Commit, list: [<line>]] A list of tuples associating a Commit object with a list of lines
that changed within the given commit. The Commit objects will be given in order of appearance.

branches
A list of Head objects representing the branch heads in this repo

Returns git.IterableList(Head, ...)

clone(path, **kwargs)
Create a clone from this repository.

path is the full path of the new repo (traditionally ends with ./<name>.git).

kwargs keyword arguments to be given to the git-clone command

Returns git.Repo (the newly cloned repo)

commit(rev=None)
The Commit object for the specified revision

rev revision specifier, see git-rev-parse for viable options.

Returns git.Commit

config_level = (‘system’, ‘global’, ‘repository’)

config_reader(config_level=None)

Returns GitConfigParser allowing to read the full git configuration, but not to write it

The configuration will include values from the system, user and repository configuration files.

NOTE: On windows, system configuration cannot currently be read as the path is unknown, instead
the global path will be used.

config_level For possible values, see config_writer method If None, all applicable levels will be
used. Specify a level in case you know which exact file you whish to read to prevent reading multiple
files for instance

config_writer(config_level=’repository’)

3.15. Repo 33

GitPython Documentation, Release 0.2.0 Beta

Returns GitConfigParser allowing to write values of the specified configuration file level. Config writers
should be retrieved, used to change the configuration ,and written right away as they will lock the
configuration file in question and prevent other’s to write it.

config_level One of the following values system = sytem wide configuration file global = user level
configuration file repository = configuration file for this repostory only

create_head(path, commit=’HEAD’, force=False, **kwargs)
Create a new head within the repository.

For more documentation, please see the Head.create method.

Returns newly created Head Reference

create_remote(name, url, **kwargs)
Create a new remote.

For more information, please see the documentation of the Remote.create methods

Returns Remote reference

create_tag(path, ref=’HEAD’, message=None, force=False, **kwargs)
Create a new tag reference.

For more documentation, please see the TagReference.create method.

Returns TagReference object

daemon_export
If True, git-daemon may export this repository

delete_head(*heads, **kwargs)
Delete the given heads

kwargs Additional keyword arguments to be passed to git-branch

delete_remote(remote)
Delete the given remote.

delete_tag(*tags)
Delete the given tag references

description
the project’s description

git

git_dir

head

Return HEAD Object pointing to the current head reference

heads
A list of Head objects representing the branch heads in this repo

Returns git.IterableList(Head, ...)

index

Returns IndexFile representing this repository’s index.

classmethod init(path=None, mkdir=True, **kwargs)
Initialize a git repository at the given path if specified

path is the full path to the repo (traditionally ends with /<name>.git) or None in which case the repository
will be created in the current working directory

34 Chapter 3. API Reference

GitPython Documentation, Release 0.2.0 Beta

mkdir if specified will create the repository directory if it doesn’t already exists. Creates the directory
with a mode=0755. Only effective if a path is explicitly given

kwargs keyword arguments serving as additional options to the git-init command

Examples:

git.Repo.init(’/var/git/myrepo.git’,bare=True)

Returns git.Repo (the newly created repo)

is_dirty(index=True, working_tree=True, untracked_files=False)

Returns True, the repository is considered dirty. By default it will react like a git-status without un-
tracked files, hence it is dirty if the index or the working copy have changes.

iter_commits(rev=None, paths=’‘, **kwargs)
A list of Commit objects representing the history of a given ref/commit

rev

revision specifier, see git-rev-parse for viable options. If None, the active branch will be used.

paths is an optional path or a list of paths to limit the returned commits to Commits that do not
contain that path or the paths will not be returned.

kwargs Arguments to be passed to git-rev-list - common ones are max_count and skip

Note: to receive only commits between two named revisions, use the “revA..revB” revision specifier

Returns git.Commit[]

iter_trees(*args, **kwargs)

Returns Iterator yielding Tree objects

Note: Takes all arguments known to iter_commits method

re_author_committer_start = <_sre.SRE_Pattern object at 0x7fe754822270>

re_hexsha_only = <_sre.SRE_Pattern object at 0x7fe75486a8c8>

re_tab_full_line = <_sre.SRE_Pattern object at 0x7fe754852a80>

re_whitespace = <_sre.SRE_Pattern object at 0x7fe75487e4f0>

references
A list of Reference objects representing tags, heads and remote references.

Returns IterableList(Reference, ...)

refs
A list of Reference objects representing tags, heads and remote references.

Returns IterableList(Reference, ...)

remote(name=’origin’)

Return Remote with the specified name

Raise ValueError if no remote with such a name exists

remotes
A list of Remote objects allowing to access and manipulate remotes

Returns git.IterableList(Remote, ...)

3.15. Repo 35

GitPython Documentation, Release 0.2.0 Beta

tag(path)

Return TagReference Object, reference pointing to a Commit or Tag

path path to the tag reference, i.e. 0.1.5 or tags/0.1.5

tags
A list of Tag objects that are available in this repo

Returns git.IterableList(TagReference, ...)

tree(rev=None)
The Tree object for the given treeish revision

rev is a revision pointing to a Treeish (being a commit or tree)

Examples:

repo.tree(repo.heads[0])

Returns git.Tree

NOTE If you need a non-root level tree, find it by iterating the root tree. Otherwise it cannot know about
its path relative to the repository root and subsequent operations might have unexpected results.

untracked_files

Returns list(str,...)

Files currently untracked as they have not been staged yet. Paths are relative to the current working
directory of the git command.

Note ignored files will not appear here, i.e. files mentioned in .gitignore

working_dir

working_tree_dir

Returns The working tree directory of our git repository

Raises AssertionError If we are a bare repository

git.repo.is_git_dir(d)
This is taken from the git setup.c:is_git_directory function.

git.repo.touch(filename)

3.16 Stats

class git.stats.Stats(total, files)
Represents stat information as presented by git at the end of a merge. It is created from the output of a diff
operation.

Example:

c = Commit(sha1)
s = c.stats
s.total # full-stat-dict
s.files # dict(filepath : stat-dict)

36 Chapter 3. API Reference

GitPython Documentation, Release 0.2.0 Beta

stat-dict

A dictionary with the following keys and values:

deletions = number of deleted lines as int
insertions = number of inserted lines as int
lines = total number of lines changed as int, or deletions + insertions

full-stat-dict

In addition to the items in the stat-dict, it features additional information:

files = number of changed files as int

files

total

3.17 Utils

class git.utils.BlockingLockFile(file_path, check_interval_s=0.3,
max_block_time_s=9223372036854775807)

The lock file will block until a lock could be obtained, or fail after a specified timeout

class git.utils.ConcurrentWriteOperation(file_path)
This class facilitates a safe write operation to a file on disk such that we:

•lock the original file

•write to a temporary file

•rename temporary file back to the original one on close

•unlock the original file

This type handles error correctly in that it will assure a consistent state on destruction

class git.utils.Iterable
Defines an interface for iterable items which is to assure a uniform way to retrieve and iterate items within the
git repository

classmethod iter_items(repo, *args, **kwargs)
For more information about the arguments, see list_items Return:

iterator yielding Items

classmethod list_items(repo, *args, **kwargs)
Find all items of this type - subclasses can specify args and kwargs differently. If no args are given,
subclasses are obliged to return all items if no additional arguments arg given.

Note: Favor the iter_items method as it will

Returns: list(Item,...) list of item instances

class git.utils.IterableList(id_attr, prefix=’‘)
List of iterable objects allowing to query an object by id or by named index:

heads = repo.heads
heads.master
heads[’master’]
heads[0]

3.17. Utils 37

GitPython Documentation, Release 0.2.0 Beta

It requires an id_attribute name to be set which will be queried from its contained items to have a means for
comparison.

A prefix can be specified which is to be used in case the id returned by the items always contains a prefix that
does not matter to the user, so it can be left out.

class git.utils.LazyMixin
Base class providing an interface to lazily retrieve attribute values upon first access. If slots are used, memory
will only be reserved once the attribute is actually accessed and retrieved the first time. All future accesses will
return the cached value as stored in the Instance’s dict or slot.

class git.utils.LockFile(file_path)
Provides methods to obtain, check for, and release a file based lock which should be used to handle concurrent
access to the same file.

As we are a utility class to be derived from, we only use protected methods.

Locks will automatically be released on destruction

class git.utils.SHA1Writer(f)
Wrapper around a file-like object that remembers the SHA1 of the data written to it. It will write a sha when the
stream is closed or if the asked for explicitly usign write_sha.

Note: Based on the dulwich project

close()

f

sha1

tell()

write(data)

write_sha()

git.utils.join_path(a, *p)
Join path tokens together similar to os.path.join, but always use ‘/’ instead of possibly ‘’ on windows.

git.utils.join_path_native(a, *p)
As join path, but makes sure an OS native path is returned. This is only needed to play it safe on my dear
windows and to assure nice paths that only use ‘’

git.utils.make_sha(source=’‘)
A python2.4 workaround for the sha/hashlib module fiasco

Note From the dulwich project

git.utils.to_native_path(path)

git.utils.to_native_path_linux(path)

git.utils.to_native_path_windows(path)

38 Chapter 3. API Reference

CHAPTER 4

Roadmap

The full list of milestones including associated tasks can be found on lighthouse:
http://byronimo.lighthouseapp.com/projects/51787-gitpython/milestones

39

http://byronimo.lighthouseapp.com/projects/51787-gitpython/milestones

GitPython Documentation, Release 0.2.0 Beta

40 Chapter 4. Roadmap

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

41

GitPython Documentation, Release 0.2.0 Beta

42 Chapter 5. Indices and tables

Python Module Index

g
git.actor, 11
git.cmd, 16
git.config, 17
git.diff, 18
git.errors, 19
git.index, 19
git.objects.base, 11
git.objects.blob, 12
git.objects.commit, 12
git.objects.tag, 14
git.objects.tree, 14
git.objects.utils, 15
git.refs, 23
git.remote, 28
git.repo, 32
git.stats, 36
git.utils, 37

43

GitPython Documentation, Release 0.2.0 Beta

44 Python Module Index

Index

A
a_blob (git.diff.Diff attribute), 18
a_mode (git.diff.Diff attribute), 18
abspath (git.objects.base.IndexObject attribute), 11
active_branch (git.repo.Repo attribute), 32
Actor (class in git.actor), 11
add() (git.index.IndexFile method), 21
add() (git.remote.Remote class method), 29
alternates (git.repo.Repo attribute), 32
archive() (git.repo.Repo method), 32
args (git.cmd.Git.AutoInterrupt attribute), 16
author (git.objects.commit.Commit attribute), 12
author_tz_offset (git.objects.commit.Commit attribute),

12
authored_date (git.objects.commit.Commit attribute), 12

B
b_blob (git.diff.Diff attribute), 18
b_mode (git.diff.Diff attribute), 18
bare (git.repo.Repo attribute), 33
BaseIndexEntry (class in git.index), 19
BEGIN (git.remote.RemoteProgress attribute), 31
blame() (git.repo.Repo method), 33
Blob (class in git.objects.blob), 12
blob_id (git.objects.tree.Tree attribute), 14
BlobFilter (class in git.index), 20
blobs (git.objects.tree.Tree attribute), 14
BlockingLockFile (class in git.utils), 37
branches (git.repo.Repo attribute), 33

C
cat_file_all (git.cmd.Git attribute), 16
cat_file_header (git.cmd.Git attribute), 16
change_type (git.diff.DiffIndex attribute), 18
checkout() (git.index.IndexFile method), 21
checkout() (git.refs.Head method), 24
CheckoutError, 20
clear_cache() (git.cmd.Git method), 16
clear_cache() (in module git.index), 23
clone() (git.repo.Repo method), 33

close() (git.utils.SHA1Writer method), 38
Commit (class in git.objects.commit), 12
commit (git.refs.SymbolicReference attribute), 25
commit (git.refs.TagReference attribute), 27
commit (git.remote.FetchInfo attribute), 28
commit() (git.index.IndexFile method), 21
commit() (git.repo.Repo method), 33
commit_id (git.objects.tree.Tree attribute), 14
committed_date (git.objects.commit.Commit attribute),

12
committer (git.objects.commit.Commit attribute), 12
committer_tz_offset (git.objects.commit.Commit at-

tribute), 13
COMPRESSING (git.remote.RemoteProgress attribute),

31
ConcurrentWriteOperation (class in git.utils), 37
config_level (git.repo.Repo attribute), 33
config_reader (git.remote.Remote attribute), 29
config_reader() (git.repo.Repo method), 33
config_writer (git.remote.Remote attribute), 30
config_writer() (git.repo.Repo method), 33
count() (git.objects.commit.Commit method), 13
COUNTING (git.remote.RemoteProgress attribute), 31
create() (git.refs.Head class method), 24
create() (git.refs.Reference class method), 25
create() (git.refs.SymbolicReference class method), 25
create() (git.refs.TagReference class method), 27
create() (git.remote.Remote class method), 30
create_from_tree() (git.objects.commit.Commit class

method), 13
create_head() (git.repo.Repo method), 34
create_remote() (git.repo.Repo method), 34
create_tag() (git.repo.Repo method), 34
ctime (git.index.IndexEntry attribute), 20

D
daemon_export (git.repo.Repo attribute), 34
DAEMON_EXPORT_FILE (git.repo.Repo attribute), 32
dashify() (in module git.cmd), 17
data (git.objects.base.Object attribute), 11
data_stream (git.objects.base.Object attribute), 12

45

GitPython Documentation, Release 0.2.0 Beta

default_index() (in module git.index), 23
DEFAULT_MIME_TYPE (git.objects.blob.Blob at-

tribute), 12
delete() (git.refs.Head class method), 24
delete() (git.refs.RemoteReference class method), 25
delete() (git.refs.SymbolicReference class method), 26
delete() (git.refs.TagReference class method), 27
delete_head() (git.repo.Repo method), 34
delete_remote() (git.repo.Repo method), 34
delete_tag() (git.repo.Repo method), 34
DELETED (git.remote.PushInfo attribute), 29
deleted_file (git.diff.Diff attribute), 18
description (git.repo.Repo attribute), 34
dev (git.index.IndexEntry attribute), 20
Diff (class in git.diff), 18
diff (git.diff.Diff attribute), 18
diff() (git.diff.Diffable method), 19
diff() (git.index.IndexFile method), 21
Diffable (class in git.diff), 19
Diffable.Index (class in git.diff), 19
DiffIndex (class in git.diff), 18

E
END (git.remote.RemoteProgress attribute), 31
entries (git.index.IndexFile attribute), 21
ERROR (git.remote.FetchInfo attribute), 28
ERROR (git.remote.PushInfo attribute), 29
execute() (git.cmd.Git method), 16

F
f (git.utils.SHA1Writer attribute), 38
FAST_FORWARD (git.remote.FetchInfo attribute), 28
FAST_FORWARD (git.remote.PushInfo attribute), 29
fetch() (git.remote.Remote method), 30
FetchInfo (class in git.remote), 28
files (git.stats.Stats attribute), 37
flags (git.remote.FetchInfo attribute), 28
flags (git.remote.PushInfo attribute), 29
FORCED_UPDATE (git.remote.FetchInfo attribute), 28
FORCED_UPDATE (git.remote.PushInfo attribute), 29
from_base() (git.index.IndexEntry class method), 20
from_blob() (git.index.BaseIndexEntry class method), 20
from_blob() (git.index.IndexEntry class method), 20
from_path() (git.refs.SymbolicReference class method),

26
from_tree() (git.index.IndexFile class method), 21

G
get_entries_key() (git.index.IndexFile class method), 22
get_object_data() (git.cmd.Git method), 17
get_object_header() (git.cmd.Git method), 17
get_object_type_by_name() (in module git.objects.utils),

15
gid (git.index.IndexEntry attribute), 21

Git (class in git.cmd), 16
git (git.repo.Repo attribute), 34
git.actor (module), 11
Git.AutoInterrupt (class in git.cmd), 16
git.cmd (module), 16
git.config (module), 17
git.diff (module), 18
git.errors (module), 19
git.index (module), 19
git.objects.base (module), 11
git.objects.blob (module), 12
git.objects.commit (module), 12
git.objects.tag (module), 14
git.objects.tree (module), 14
git.objects.utils (module), 15
git.refs (module), 23
git.remote (module), 28
git.repo (module), 32
git.stats (module), 36
git.utils (module), 37
git_dir (git.repo.Repo attribute), 34
GitCommandError, 19
GitConfigParser (in module git.config), 17

H
HEAD (class in git.refs), 23
Head (class in git.refs), 23
head (git.repo.Repo attribute), 34
HEAD_UPTODATE (git.remote.FetchInfo attribute), 28
heads (git.repo.Repo attribute), 34

I
index (git.repo.Repo attribute), 34
IndexEntry (class in git.index), 20
IndexFile (class in git.index), 21
IndexObject (class in git.objects.base), 11
init() (git.repo.Repo class method), 34
inode (git.index.IndexEntry attribute), 21
InvalidGitRepositoryError, 19
is_detached (git.refs.SymbolicReference attribute), 26
is_dirty() (git.repo.Repo method), 35
is_git_dir() (in module git.repo), 36
is_valid() (git.refs.SymbolicReference method), 26
iter_blobs() (git.index.IndexFile method), 22
iter_change_type() (git.diff.DiffIndex method), 18
iter_commits() (git.repo.Repo method), 35
iter_items() (git.objects.commit.Commit class method),

13
iter_items() (git.refs.Reference class method), 25
iter_items() (git.refs.SymbolicReference class method),

26
iter_items() (git.remote.Remote class method), 30
iter_items() (git.utils.Iterable class method), 37
iter_parents() (git.objects.commit.Commit method), 13

46 Index

GitPython Documentation, Release 0.2.0 Beta

iter_trees() (git.repo.Repo method), 35
Iterable (class in git.utils), 37
IterableList (class in git.utils), 37

J
join_path() (in module git.utils), 38
join_path_native() (in module git.utils), 38

L
LazyMixin (class in git.utils), 38
line_dropped() (git.remote.RemoteProgress method), 32
list_items() (git.utils.Iterable class method), 37
local_ref (git.remote.PushInfo attribute), 29
LockFile (class in git.utils), 38

M
make_sha() (in module git.utils), 38
merge_tree() (git.index.IndexFile method), 22
message (git.objects.commit.Commit attribute), 13
message (git.objects.tag.TagObject attribute), 14
mime_type (git.objects.blob.Blob attribute), 12
mode (git.index.BaseIndexEntry attribute), 20
mode (git.objects.base.IndexObject attribute), 11
move() (git.index.IndexFile method), 22
mtime (git.index.IndexEntry attribute), 21

N
name (git.objects.base.IndexObject attribute), 11
name (git.refs.Reference attribute), 25
name (git.refs.SymbolicReference attribute), 26
name (git.remote.FetchInfo attribute), 28
name (git.remote.Remote attribute), 30
name_email_regex (git.actor.Actor attribute), 11
name_only_regex (git.actor.Actor attribute), 11
name_rev (git.objects.commit.Commit attribute), 13
new() (git.objects.base.Object class method), 12
new_file (git.diff.Diff attribute), 18
NEW_HEAD (git.remote.FetchInfo attribute), 28
NEW_HEAD (git.remote.PushInfo attribute), 29
NEW_TAG (git.remote.FetchInfo attribute), 28
NEW_TAG (git.remote.PushInfo attribute), 29
NO_MATCH (git.remote.PushInfo attribute), 29
NoSuchPathError, 19
note (git.remote.FetchInfo attribute), 28
null_hex_sha (git.diff.Diff attribute), 18
NULL_HEX_SHA (git.objects.base.Object attribute), 11

O
Object (class in git.objects.base), 11
object (git.objects.tag.TagObject attribute), 14
object (git.refs.Reference attribute), 25
old_commit (git.remote.FetchInfo attribute), 28
old_commit (git.remote.PushInfo attribute), 29

OP_MASK (git.remote.RemoteProgress attribute), 31

P
parents (git.objects.commit.Commit attribute), 13
parse_actor_and_date() (in module git.objects.utils), 15
path (git.index.BaseIndexEntry attribute), 20
path (git.index.IndexFile attribute), 22
path (git.objects.base.IndexObject attribute), 11
path (git.refs.SymbolicReference attribute), 26
paths (git.index.BlobFilter attribute), 20
proc (git.cmd.Git.AutoInterrupt attribute), 16
ProcessStreamAdapter (class in git.objects.utils), 15
pull() (git.remote.Remote method), 30
push() (git.remote.Remote method), 31
PushInfo (class in git.remote), 28

R
re_author_committer_start (git.repo.Repo attribute), 35
re_fetch_result (git.remote.FetchInfo attribute), 28
re_header (git.diff.Diff attribute), 18
re_hexsha_only (git.repo.Repo attribute), 35
re_op_absolute (git.remote.RemoteProgress attribute), 32
re_op_relative (git.remote.RemoteProgress attribute), 32
re_tab_full_line (git.repo.Repo attribute), 35
re_whitespace (git.repo.Repo attribute), 35
ref (git.refs.SymbolicReference attribute), 26
ref (git.remote.FetchInfo attribute), 28
Reference (class in git.refs), 25
reference (git.refs.SymbolicReference attribute), 26
references (git.repo.Repo attribute), 35
refs (git.remote.Remote attribute), 31
refs (git.repo.Repo attribute), 35
REJECTED (git.remote.FetchInfo attribute), 28
REJECTED (git.remote.PushInfo attribute), 29
Remote (class in git.remote), 29
remote() (git.repo.Repo method), 35
REMOTE_FAILURE (git.remote.PushInfo attribute), 29
remote_head (git.refs.RemoteReference attribute), 25
remote_name (git.refs.RemoteReference attribute), 25
remote_ref (git.remote.PushInfo attribute), 29
remote_ref_string (git.remote.PushInfo attribute), 29
REMOTE_REJECTED (git.remote.PushInfo attribute),

29
RemoteProgress (class in git.remote), 31
RemoteReference (class in git.refs), 25
remotes (git.repo.Repo attribute), 35
remove() (git.index.IndexFile method), 22
remove() (git.remote.Remote class method), 31
rename() (git.refs.Head method), 24
rename() (git.refs.SymbolicReference method), 26
rename() (git.remote.Remote method), 31
rename_from (git.diff.Diff attribute), 18
rename_to (git.diff.Diff attribute), 18
renamed (git.diff.Diff attribute), 18

Index 47

GitPython Documentation, Release 0.2.0 Beta

Repo (class in git.repo), 32
repo (git.index.IndexFile attribute), 22
repo (git.objects.base.Object attribute), 12
repo (git.refs.SymbolicReference attribute), 27
repo (git.remote.Remote attribute), 31
reset() (git.index.IndexFile method), 22
reset() (git.refs.HEAD method), 23
resolve_blobs() (git.index.IndexFile method), 22
rm() (git.remote.Remote class method), 31

S
S_IFGITLINK (git.index.IndexFile attribute), 21
sha (git.index.BaseIndexEntry attribute), 20
sha (git.objects.base.Object attribute), 12
sha1 (git.utils.SHA1Writer attribute), 38
SHA1Writer (class in git.utils), 38
sha_to_hex() (in module git.objects.tree), 15
size (git.index.IndexEntry attribute), 21
size (git.objects.base.Object attribute), 12
stage (git.index.BaseIndexEntry attribute), 20
STAGE_MASK (git.remote.RemoteProgress attribute),

31
stale_refs (git.remote.Remote attribute), 31
Stats (class in git.stats), 36
stats (git.objects.commit.Commit attribute), 14
stream_data() (git.objects.base.Object method), 12
summary (git.objects.commit.Commit attribute), 14
summary (git.remote.PushInfo attribute), 29
SymbolicReference (class in git.refs), 25
symlink_id (git.objects.tree.Tree attribute), 14

T
tag (git.objects.tag.TagObject attribute), 14
tag (git.refs.TagReference attribute), 27
Tag (in module git.refs), 27
tag() (git.repo.Repo method), 35
TAG_UPDATE (git.remote.FetchInfo attribute), 28
tagged_date (git.objects.tag.TagObject attribute), 14
tagger (git.objects.tag.TagObject attribute), 14
tagger_tz_offset (git.objects.tag.TagObject attribute), 14
TagObject (class in git.objects.tag), 14
TagReference (class in git.refs), 27
tags (git.repo.Repo attribute), 36
tell() (git.utils.SHA1Writer method), 38
to_full_path() (git.refs.SymbolicReference class method),

27
to_native_path() (in module git.utils), 38
to_native_path_linux() (in module git.utils), 38
to_native_path_windows() (in module git.utils), 38
total (git.stats.Stats attribute), 37
touch() (in module git.repo), 36
transform_kwargs() (git.cmd.Git method), 17
Traversable (class in git.objects.utils), 15
traverse() (git.objects.tree.Tree method), 14

traverse() (git.objects.utils.Traversable method), 15
Tree (class in git.objects.tree), 14
tree (git.objects.commit.Commit attribute), 14
tree() (git.repo.Repo method), 36
tree_id (git.objects.tree.Tree attribute), 15
trees (git.objects.tree.Tree attribute), 15
type (git.objects.base.Object attribute), 12
type (git.objects.blob.Blob attribute), 12
type (git.objects.commit.Commit attribute), 14
type (git.objects.tag.TagObject attribute), 14
type (git.objects.tree.Tree attribute), 15
TYPES (git.objects.base.Object attribute), 11

U
uid (git.index.IndexEntry attribute), 21
unmerged_blobs() (git.index.IndexFile method), 22
untracked_files (git.repo.Repo attribute), 36
UP_TO_DATE (git.remote.PushInfo attribute), 29
update() (git.index.IndexFile method), 22
update() (git.remote.Remote method), 31
update() (git.remote.RemoteProgress method), 32

V
version (git.index.IndexFile attribute), 22

W
wait() (git.cmd.Git.AutoInterrupt method), 16
working_dir (git.cmd.Git attribute), 17
working_dir (git.repo.Repo attribute), 36
working_tree_dir (git.repo.Repo attribute), 36
write() (git.index.IndexFile method), 22
write() (git.utils.SHA1Writer method), 38
write_sha() (git.utils.SHA1Writer method), 38
write_tree() (git.index.IndexFile method), 23
WRITING (git.remote.RemoteProgress attribute), 32

X
x (git.remote.FetchInfo attribute), 28
x (git.remote.PushInfo attribute), 29
x (git.remote.RemoteProgress attribute), 32

48 Index

	Overview / Install
	Requirements
	Installing GitPython
	Getting Started
	API Reference
	Source Code
	Mailing List
	Issue Tracker
	License Information

	GitPython Tutorial
	Initialize a Repo object
	Examining References
	Modifying References
	Understanding Objects
	The Commit object
	The Tree object
	The Index Object
	Handling Remotes
	Obtaining Diff Information
	Switching Branches
	Using git directly
	And even more ...

	API Reference
	Actor
	Objects.Base
	Objects.Blob
	Objects.Commit
	Objects.Tag
	Objects.Tree
	Objects.Utils
	GitCmd
	Config
	Diff
	Errors
	Index
	Refs
	Remote
	Repo
	Stats
	Utils

	Roadmap
	Indices and tables
	Python Module Index

