

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	GitPython 0.2.0 Beta documentation

GitPython Documentation

	Overview / Install
	Requirements

	Installing GitPython

	Getting Started

	API Reference

	Source Code

	Mailing List

	Issue Tracker

	License Information

	GitPython Tutorial
	Initialize a Repo object

	Examining References

	Modifying References

	Understanding Objects

	The Commit object

	The Tree object

	The Index Object

	Handling Remotes

	Obtaining Diff Information

	Switching Branches

	Using git directly

	And even more ...

	API Reference
	Actor

	Objects.Base

	Objects.Blob

	Objects.Commit

	Objects.Tag

	Objects.Tree

	Objects.Utils

	GitCmd

	Config

	Diff

	Errors

	Index

	Refs

	Remote

	Repo

	Stats

	Utils

	Roadmap

Indices and tables

	Index

	Module Index

	Search Page

 Copyright Copyright (C) 2008, 2009 Michael Trier and contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	GitPython 0.2.0 Beta documentation

Overview / Install

GitPython is a python library used to interact with Git repositories.

GitPython was a port of the grit [http://grit.rubyforge.org] library in Ruby created by
Tom Preston-Werner and Chris Wanstrath, but grew beyond its heritage through its improved design and performance.

Requirements

	Git [http://git-scm.com/] tested with 1.5.3.7

	Requires Git [http://git-scm.com/] 1.6.5.4 or newer if index.add function is to be used

	Python Nose [http://code.google.com/p/python-nose/] - used for running the tests

	Mock by Michael Foord [http://www.voidspace.org.uk/python/mock.html] used for tests. Requires 0.5

Installing GitPython

Installing GitPython is easily done using
setuptools [http://peak.telecommunity.com/DevCenter/setuptools]. Assuming it is
installed, just run the following from the command-line:

easy_install GitPython

This command will download the latest version of GitPython from the
Python Package Index [http://pypi.python.org/pypi/GitPython] and install it
to your system. More information about easy_install and pypi can be found
here:

	setuptools [http://peak.telecommunity.com/DevCenter/setuptools]

	install setuptools [http://peak.telecommunity.com/DevCenter/EasyInstall#installation-instructions]

	pypi [http://pypi.python.org/pypi/SQLAlchemy]

Alternatively, you can install from the distribution using the setup.py
script:

python setup.py install

Getting Started

	GitPython Tutorial - This tutorial provides a walk-through of some of
the basic functionality and concepts used in GitPython. It, however, is not
exhaustive so you are encouraged to spend some time in the
API Reference.

API Reference

An organized section of the GitPthon API is at API Reference.

Source Code

GitPython’s git repo is available on Gitorious and GitHub, which can be browsed at:

	http://gitorious.org/projects/git-python/

	http://github.com/Byron/GitPython

and cloned using:

$ git clone git://gitorious.org/git-python/mainline.git git-python
$ git clone git://github.com/Byron/GitPython.git git-python

Mailing List

http://groups.google.com/group/git-python

Issue Tracker

http://byronimo.lighthouseapp.com/projects/51787-gitpython/milestones

License Information

GitPython is licensed under the New BSD License. See the LICENSE file for
more information.

 Copyright Copyright (C) 2008, 2009 Michael Trier and contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	GitPython 0.2.0 Beta documentation

GitPython Tutorial

GitPython provides object model access to your git repository. This tutorial is composed of multiple sections, each of which explain a real-life usecase.

Initialize a Repo object

The first step is to create a Repo object to represent your repository:

from git import *
repo = Repo("/Users/mtrier/Development/git-python")

In the above example, the directory /Users/mtrier/Development/git-python is my working repository and contains the .git directory. You can also initialize GitPython with a bare repository:

repo = Repo.create("/var/git/git-python.git")

A repo object provides high-level access to your data, it allows you to create and delete heads, tags and remotes and access the configuration of the repository:

repo.config_reader() # get a config reader for read-only access
repo.config_writer() # get a config writer to change configuration

Query the active branch, query untracked files or whether the repository data has been modified:

repo.is_dirty()
False
repo.untracked_files
['my_untracked_file']

Clone from existing repositories or initialize new empty ones:

cloned_repo = repo.clone("to/this/path")
new_repo = repo.init("path/for/new/repo")

Archive the repository contents to a tar file:

repo.archive(open("repo.tar",'w'))

Examining References

References are the tips of your commit graph from which you can easily examine the history of your project:

heads = repo.heads
master = heads.master # lists can be accessed by name for convenience
master.commit # the commit pointed to by head called master
master.rename("new_name") # rename heads

Tags are (usually immutable) references to a commit and/or a tag object:

tags = repo.tags
tagref = tags[0]
tagref.tag # tags may have tag objects carrying additional information
tagref.commit # but they always point to commits
repo.delete_tag(tagref) # delete or
repo.create_tag("my_tag") # create tags using the repo for convenience

A symbolic reference is a special case of a reference as it points to another reference instead of a commit:

head = repo.head # the head points to the active branch/ref
master = head.reference # retrieve the reference the head points to
master.commit # from here you use it as any other reference

Modifying References

You can easily create and delete reference types or modify where they point to:

repo.delete_head('master') # delete an existing head
master = repo.create_head('master') # create a new one
master.commit = 'HEAD~10' # set branch to another commit without changing index or working tree

Create or delete tags the same way except you may not change them afterwards:

new_tag = repo.create_tag('my_tag', 'my message')
repo.delete_tag(new_tag)

Change the symbolic reference to switch branches cheaply (without adjusting the index or the working copy):

new_branch = repo.create_head('new_branch')
repo.head.reference = new_branch

Understanding Objects

An Object is anything storable in git’s object database. Objects contain information about their type, their uncompressed size as well as the actual data. Each object is uniquely identified by a SHA1 hash, being 40 hexadecimal characters in size or 20 bytes in size.

Git only knows 4 distinct object types being Blobs, Trees, Commits and Tags.

In Git-Pyhton, all objects can be accessed through their common base, compared and hashed, as shown in the following example:

hc = repo.head.commit
hct = hc.tree
hc != hct
hc != repo.tags[0]
hc == repo.head.reference.commit

Basic fields are:

hct.type
'tree'
hct.size
166
hct.sha
'a95eeb2a7082212c197cabbf2539185ec74ed0e8'
hct.data # returns string with pure uncompressed data
'...'
len(hct.data) == hct.size

Index Objects are objects that can be put into git’s index. These objects are trees and blobs which additionally know about their path in the filesystem as well as their mode:

hct.path # root tree has no path
''
hct.trees[0].path # the first subdirectory has one though
'dir'
htc.mode # trees have mode 0
0
'%o' % htc.blobs[0].mode # blobs have a specific mode though comparable to a standard linux fs
100644

Access blob data (or any object data) directly or using streams:

htc.data # binary tree data as string (inefficient)
htc.blobs[0].data_stream # stream object to read data from
htc.blobs[0].stream_data(my_stream) # write data to given stream

The Commit object

Commit objects contain information about a specific commit. Obtain commits using references as done in Examining References or as follows.

Obtain commits at the specified revision:

repo.commit('master')
repo.commit('v0.1')
repo.commit('HEAD~10')

Iterate 100 commits:

repo.iter_commits('master', max_count=100)

If you need paging, you can specify a number of commits to skip:

repo.iter_commits('master', max_count=10, skip=20)

The above will return commits 21-30 from the commit list.:

headcommit = repo.head.commit

headcommit.sha
'207c0c4418115df0d30820ab1a9acd2ea4bf4431'

headcommit.parents
[<git.Commit "a91c45eee0b41bf3cdaad3418ca3850664c4a4b4">]

headcommit.tree
<git.Tree "563413aedbeda425d8d9dcbb744247d0c3e8a0ac">

headcommit.author
<git.Actor "Michael Trier <mtrier@gmail.com>">

headcommit.authored_date # seconds since epoch
1256291446

headcommit.committer
<git.Actor "Michael Trier <mtrier@gmail.com>">

headcommit.committed_date
1256291446

headcommit.message
'cleaned up a lot of test information. Fixed escaping so it works with
subprocess.'

Note: date time is represented in a seconds since epock format. Conversion to human readable form can be accomplished with the various time module methods:

import time
time.asctime(time.gmtime(headcommit.committed_date))
'Wed May 7 05:56:02 2008'

time.strftime("%a, %d %b %Y %H:%M", time.gmtime(headcommit.committed_date))
'Wed, 7 May 2008 05:56'

You can traverse a commit’s ancestry by chaining calls to parents:

headcommit.parents[0].parents[0].parents[0]

The above corresponds to master^^^ or master~3 in git parlance.

The Tree object

A tree records pointers to the contents of a directory. Let’s say you want the root tree of the latest commit on the master branch:

tree = repo.heads.master.commit.tree
<git.Tree "a006b5b1a8115185a228b7514cdcd46fed90dc92">

tree.sha
'a006b5b1a8115185a228b7514cdcd46fed90dc92'

Once you have a tree, you can get the contents:

tree.trees # trees are subdirectories
[<git.Tree "f7eb5df2e465ab621b1db3f5714850d6732cfed2">]

tree.blobs # blobs are files
[<git.Blob "a871e79d59cf8488cac4af0c8f990b7a989e2b53">,
<git.Blob "3594e94c04db171e2767224db355f514b13715c5">,
<git.Blob "e79b05161e4836e5fbf197aeb52515753e8d6ab6">,
<git.Blob "94954abda49de8615a048f8d2e64b5de848e27a1">]

Its useful to know that a tree behaves like a list with the ability to query entries by name:

tree[0] == tree['dir'] # access by index and by sub-path
<git.Tree "f7eb5df2e465ab621b1db3f5714850d6732cfed2">
for entry in tree: do_something_with(entry)

blob = tree[0][0]
blob.name
'file'
blob.path
'dir/file'
blob.abspath
'/Users/mtrier/Development/git-python/dir/file'
>>>tree['dir/file'].sha == blob.sha

There is a convenience method that allows you to get a named sub-object from a tree with a syntax similar to how paths are written in an unix system:

tree/"lib"
<git.Tree "c1c7214dde86f76bc3e18806ac1f47c38b2b7a30">
tree/"dir/file" == blob.sha

You can also get a tree directly from the repository if you know its name:

repo.tree()
<git.Tree "master">

repo.tree("c1c7214dde86f76bc3e18806ac1f47c38b2b7a30")
<git.Tree "c1c7214dde86f76bc3e18806ac1f47c38b2b7a30">
repo.tree('0.1.6')
<git.Tree "6825a94104164d9f0f5632607bebd2a32a3579e5">

As trees only allow direct access to their direct entries, use the traverse method to obtain an iterator to traverse entries recursively:

tree.traverse()
<generator object at 0x7f6598bd65a8>
for entry in traverse(): do_something_with(entry)

The Index Object

The git index is the stage containing changes to be written with the next commit or where merges finally have to take place. You may freely access and manipulate this information using the IndexFile Object:

index = repo.index

Access objects and add/remove entries. Commit the changes:

for stage,blob in index.iter_blobs(): do_something(...)
Access blob objects
for (path,stage),entry in index.entries.iteritems: pass
Access the entries directly
index.add(['my_new_file']) # add a new file to the index
index.remove(['dir/existing_file'])
new_commit = index.commit("my commit message")

Create new indices from other trees or as result of a merge. Write that result to a new index:

tmp_index = Index.from_tree(repo, 'HEAD~1') # load a tree into a temporary index
merge_index = Index.from_tree(repo, 'base', 'HEAD', 'some_branch') # merge two trees three-way
merge_index.write("merged_index")

Handling Remotes

Remotes are used as alias for a foreign repository to ease pushing to and fetching from them:

test_remote = repo.create_remote('test', 'git@server:repo.git')
repo.delete_remote(test_remote) # create and delete remotes
origin = repo.remotes.origin # get default remote by name
origin.refs # local remote references
o = origin.rename('new_origin') # rename remotes
o.fetch() # fetch, pull and push from and to the remote
o.pull()
o.push()

You can easily access configuration information for a remote by accessing options as if they where attributes:

o.url
'git@server:dummy_repo.git'

Change configuration for a specific remote only:

o.config_writer.set("pushurl", "other_url")

Obtaining Diff Information

Diffs can generally be obtained by Subclasses of Diffable as they provide the diff method. This operation yields a DiffIndex allowing you to easily access diff information about paths.

Diffs can be made between the Index and Trees, Index and the working tree, trees and trees as well as trees and the working copy. If commits are involved, their tree will be used implicitly:

hcommit = repo.head.commit
idiff = hcommit.diff() # diff tree against index
tdiff = hcommit.diff('HEAD~1') # diff tree against previous tree
wdiff = hcommit.diff(None) # diff tree against working tree

index = repo.index
index.diff() # diff index against itself yielding empty diff
index.diff(None) # diff index against working copy
index.diff('HEAD') # diff index against current HEAD tree

The item returned is a DiffIndex which is essentially a list of Diff objects. It provides additional filtering to ease finding what you might be looking for:

for diff_added in wdiff.iter_change_type('A'): do_something_with(diff_added)

Switching Branches

To switch between branches, you effectively need to point your HEAD to the new branch head and reset your index and working copy to match. A simple manual way to do it is the following one:

repo.head.reference = repo.heads.other_branch
repo.head.reset(index=True, working_tree=True)

The previous approach would brutally overwrite the user’s changes in the working copy and index though and is less sophisticated than a git-checkout for instance which generally prevents you from destroying your work. Use the safer approach as follows:

repo.heads.master.checkout() # checkout the branch using git-checkout
repo.heads.other_branch.checkout()

Using git directly

In case you are missing functionality as it has not been wrapped, you may conveniently use the git command directly. It is owned by each repository instance:

git = repo.git
git.checkout('head', b="my_new_branch") # default command
git.for_each_ref() # '-' becomes '_' when calling it

The return value will by default be a string of the standard output channel produced by the command.

Keyword arguments translate to short and long keyword arguments on the commandline.
The special notion git.command(flag=True) will create a flag without value like command --flag.

If None is found in the arguments, it will be dropped silently. Lists and tuples passed as arguments will be unpacked to individual arguments. Objects are converted to strings using the str(...) function.

And even more ...

There is more functionality in there, like the ability to archive repositories, get stats and logs, blame, and probably a few other things that were not mentioned here.

Check the unit tests for an in-depth introduction on how each function is supposed to be used.

 Copyright Copyright (C) 2008, 2009 Michael Trier and contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	GitPython 0.2.0 Beta documentation

API Reference

Actor

	
class git.actor.Actor(name, email)

	Actors hold information about a person acting on the repository. They
can be committers and authors or anything with a name and an email as
mentioned in the git log entries.

	
name_email_regex = <_sre.SRE_Pattern object at 0x7f15a853f2b8>

	

	
name_only_regex = <_sre.SRE_Pattern object at 0x7f15a88afa40>

	

Objects.Base

	
class git.objects.base.IndexObject(repo, sha, mode=None, path=None)

	Base for all objects that can be part of the index file , namely Tree, Blob and
SubModule objects

	
abspath

	
	Returns

	Absolute path to this index object in the file system (as opposed to the
.path field which is a path relative to the git repository).

The returned path will be native to the system and contains ‘’ on windows.

	
mode

	

	
name

	
	Returns

	Name portion of the path, effectively being the basename

	
path

	

	
class git.objects.base.Object(repo, id)

	Implements an Object which may be Blobs, Trees, Commits and Tags

This Object also serves as a constructor for instances of the correct type:

inst = Object.new(repo,id)
inst.sha # objects sha in hex
inst.size # objects uncompressed data size
inst.data # byte string containing the whole data of the object

	
NULL_HEX_SHA = '00'

	

	
TYPES = ('blob', 'tree', 'commit', 'tag')

	

	
data

	

	
data_stream

	
	Returns

	File Object compatible stream to the uncompressed raw data of the object

	
classmethod new(repo, id)

	
	Return

	New Object instance of a type appropriate to the object type behind
id. The id of the newly created object will be a hexsha even though
the input id may have been a Reference or Rev-Spec

	Note

	This cannot be a __new__ method as it would always call __init__
with the input id which is not necessarily a hexsha.

	
repo

	

	
sha

	

	
size

	

	
stream_data(ostream)

	Writes our data directly to the given output stream

	ostream

	File object compatible stream object.

	Returns

	self

	
type = None

	

Objects.Blob

	
class git.objects.blob.Blob(repo, sha, mode=None, path=None)

	A Blob encapsulates a git blob object

	
DEFAULT_MIME_TYPE = 'text/plain'

	

	
mime_type

	The mime type of this file (based on the filename)

	Returns

	str

	NOTE

	Defaults to ‘text/plain’ in case the actual file type is unknown.

	
type = 'blob'

	

Objects.Commit

	
class git.objects.commit.Commit(repo, sha, tree=None, author=None, authored_date=None, author_tz_offset=None, committer=None, committed_date=None, committer_tz_offset=None, message=None, parents=None)

	Wraps a git Commit object.

This class will act lazily on some of its attributes and will query the
value on demand only if it involves calling the git binary.

	
author

	

	
author_tz_offset

	

	
authored_date

	

	
committed_date

	

	
committer

	

	
committer_tz_offset

	

	
count(paths='', **kwargs)

	Count the number of commits reachable from this commit

	paths

	is an optinal path or a list of paths restricting the return value
to commits actually containing the paths

	kwargs

	Additional options to be passed to git-rev-list. They must not alter
the ouput style of the command, or parsing will yield incorrect results

	Returns

	int

	
classmethod create_from_tree(repo, tree, message, parent_commits=None, head=False)

	Commit the given tree, creating a commit object.

	repo

	is the Repo

	tree

	Sha of a tree or a tree object to become the tree of the new commit

	message

	Commit message. It may be an empty string if no message is provided.
It will be converted to a string in any case.

	parent_commits

	Optional Commit objects to use as parents for the new commit.
If empty list, the commit will have no parents at all and become
a root commit.
If None , the current head commit will be the parent of the
new commit object

	head

	If True, the HEAD will be advanced to the new commit automatically.
Else the HEAD will remain pointing on the previous commit. This could
lead to undesired results when diffing files.

	Returns

	Commit object representing the new commit

	Note:

	Additional information about hte committer and Author are taken from the
environment or from the git configuration, see git-commit-tree for
more information

	
classmethod iter_items(repo, rev, paths='', **kwargs)

	Find all commits matching the given criteria.

	repo

	is the Repo

	rev

	revision specifier, see git-rev-parse for viable options

	paths

	is an optinal path or list of paths, if set only Commits that include the path
or paths will be considered

	kwargs

	optional keyword arguments to git rev-list where
max_count is the maximum number of commits to fetch
skip is the number of commits to skip
since all commits since i.e. ‘1970-01-01’

	Returns

	iterator yielding Commit items

	
iter_parents(paths='', **kwargs)

	Iterate _all_ parents of this commit.

	paths

	Optional path or list of paths limiting the Commits to those that
contain at least one of the paths

	kwargs

	All arguments allowed by git-rev-list

	Return:

	Iterator yielding Commit objects which are parents of self

	
message

	

	
name_rev

	
	Returns

	String describing the commits hex sha based on the closest Reference.
Mostly useful for UI purposes

	
parents

	

	
stats

	Create a git stat from changes between this commit and its first parent
or from all changes done if this is the very first commit.

	Return

	git.Stats

	
summary

	
	Returns

	First line of the commit message.

	
tree

	

	
type = 'commit'

	

Objects.Tag

Module containing all object based types.

	
class git.objects.tag.TagObject(repo, sha, object=None, tag=None, tagger=None, tagged_date=None, tagger_tz_offset=None, message=None)

	Non-Lightweight tag carrying additional information about an object we are pointing
to.

	
message

	

	
object

	

	
tag

	

	
tagged_date

	

	
tagger

	

	
tagger_tz_offset

	

	
type = 'tag'

	

Objects.Tree

	
class git.objects.tree.Tree(repo, sha, mode=0, path=None)

	Tress represent a ordered list of Blobs and other Trees. Hence it can be
accessed like a list.

Tree’s will cache their contents after first retrieval to improve efficiency.

Tree as a list:

Access a specific blob using the
tree['filename'] notation.

You may as well access by index
blob = tree[0]

	
blob_id = 8

	

	
blobs

	
	Returns

	list(Blob, ...) list of blobs directly below this tree

	
commit_id = 14

	

	
symlink_id = 10

	

	
traverse(predicate=<function <lambda> at 0x7f15a84e9f50>, prune=<function <lambda> at 0x7f15a84f5050>, depth=-1, branch_first=True, visit_once=False, ignore_self=1)

	For documentation, see utils.Traversable.traverse

Trees are set to visist_once = False to gain more performance in the traversal

	
tree_id = 4

	

	
trees

	
	Returns

	list(Tree, ...) list of trees directly below this tree

	
type = 'tree'

	

	
git.objects.tree.sha_to_hex(sha)

	Takes a string and returns the hex of the sha within

Objects.Utils

Module for general utility functions

	
class git.objects.utils.ProcessStreamAdapter(process, stream_name)

	Class wireing all calls to the contained Process instance.

Use this type to hide the underlying process to provide access only to a specified
stream. The process is usually wrapped into an AutoInterrupt class to kill
it if the instance goes out of scope.

	
class git.objects.utils.Traversable

	Simple interface to perforam depth-first or breadth-first traversals
into one direction.
Subclasses only need to implement one function.
Instances of the Subclass must be hashable

	
traverse(predicate=<function <lambda> at 0x7f15a84d7f50>, prune=<function <lambda> at 0x7f15a84e0050>, depth=-1, branch_first=True, visit_once=True, ignore_self=1, as_edge=False)

	
	Returns

	iterator yieling of items found when traversing self

	predicate

	f(i,d) returns False if item i at depth d should not be included in the result

	prune

	f(i,d) return True if the search should stop at item i at depth d.
Item i will not be returned.

	depth

	define at which level the iteration should not go deeper
if -1, there is no limit
if 0, you would effectively only get self, the root of the iteration
i.e. if 1, you would only get the first level of predessessors/successors

	branch_first

	if True, items will be returned branch first, otherwise depth first

	visit_once

	if True, items will only be returned once, although they might be encountered
several times. Loops are prevented that way.

	ignore_self

	if True, self will be ignored and automatically pruned from
the result. Otherwise it will be the first item to be returned.
If as_edge is True, the source of the first edge is None

	as_edge

	if True, return a pair of items, first being the source, second the
destinatination, i.e. tuple(src, dest) with the edge spanning from
source to destination

	
git.objects.utils.get_object_type_by_name(object_type_name)

	
	Returns

	type suitable to handle the given object type name.
Use the type to create new instances.

	object_type_name

	Member of TYPES

	Raises

	ValueError: In case object_type_name is unknown

	
git.objects.utils.parse_actor_and_date(line)

	Parse out the actor (author or committer) info from a line like:

author Tom Preston-Werner <tom@mojombo.com> 1191999972 -0700

	Returns

	[Actor, int_seconds_since_epoch, int_timezone_offset]

GitCmd

	
class git.cmd.Git(working_dir=None)

	The Git class manages communication with the Git binary.

It provides a convenient interface to calling the Git binary, such as in:

g = Git(git_dir)
g.init() # calls 'git init' program
rval = g.ls_files() # calls 'git ls-files' program

	Debugging

	Set the GIT_PYTHON_TRACE environment variable print each invocation
of the command to stdout.
Set its value to ‘full’ to see details about the returned values.

	
class AutoInterrupt(proc, args)

	Kill/Interrupt the stored process instance once this instance goes out of scope. It is
used to prevent processes piling up in case iterators stop reading.
Besides all attributes are wired through to the contained process object.

The wait method was overridden to perform automatic status code checking
and possibly raise.

	
args

	

	
proc

	

	
wait()

	Wait for the process and return its status code.

	Raise

	GitCommandError if the return status is not 0

	
Git.cat_file_all

	

	
Git.cat_file_header

	

	
Git.clear_cache()

	Clear all kinds of internal caches to release resources.

Currently persistent commands will be interrupted.

	Returns

	self

	
Git.execute(command, istream=None, with_keep_cwd=False, with_extended_output=False, with_exceptions=True, as_process=False, output_stream=None)

	Handles executing the command on the shell and consumes and returns
the returned information (stdout)

	command

	The command argument list to execute.
It should be a string, or a sequence of program arguments. The
program to execute is the first item in the args sequence or string.

	istream

	Standard input filehandle passed to subprocess.Popen.

	with_keep_cwd

	Whether to use the current working directory from os.getcwd().
The cmd otherwise uses its own working_dir that it has been initialized
with if possible.

	with_extended_output

	Whether to return a (status, stdout, stderr) tuple.

	with_exceptions

	Whether to raise an exception when git returns a non-zero status.

	as_process

	Whether to return the created process instance directly from which
streams can be read on demand. This will render with_extended_output and
with_exceptions ineffective - the caller will have
to deal with the details himself.
It is important to note that the process will be placed into an AutoInterrupt
wrapper that will interrupt the process once it goes out of scope. If you
use the command in iterators, you should pass the whole process instance
instead of a single stream.

	output_stream

	If set to a file-like object, data produced by the git command will be
output to the given stream directly.
This feature only has any effect if as_process is False. Processes will
always be created with a pipe due to issues with subprocess.
This merely is a workaround as data will be copied from the
output pipe to the given output stream directly.

Returns:

str(output) # extended_output = False (Default)
tuple(int(status), str(stdout), str(stderr)) # extended_output = True

if ouput_stream is True, the stdout value will be your output stream:
output_stream # extended_output = False
tuple(int(status), output_stream, str(stderr))# extended_output = True

	Raise

	GitCommandError

	NOTE

	If you add additional keyword arguments to the signature of this method,
you must update the execute_kwargs tuple housed in this module.

	
Git.get_object_data(ref)

	As get_object_header, but returns object data as well

	Return:

	(hexsha, type_string, size_as_int,data_string)

	
Git.get_object_header(ref)

	Use this method to quickly examine the type and size of the object behind
the given ref.

	NOTE

	The method will only suffer from the costs of command invocation
once and reuses the command in subsequent calls.

	Return:

	(hexsha, type_string, size_as_int)

	
Git.transform_kwargs(**kwargs)

	Transforms Python style kwargs into git command line options.

	
Git.working_dir

	
	Returns

	Git directory we are working on

	
git.cmd.dashify(string)

	

Config

Module containing module parser implementation able to properly read and write
configuration files

	
git.config.GitConfigParser

	alias of write

Diff

	
class git.diff.Diff(repo, a_path, b_path, a_blob_id, b_blob_id, a_mode, b_mode, new_file, deleted_file, rename_from, rename_to, diff)

	A Diff contains diff information between two Trees.

It contains two sides a and b of the diff, members are prefixed with
“a” and “b” respectively to inidcate that.

Diffs keep information about the changed blob objects, the file mode, renames,
deletions and new files.

There are a few cases where None has to be expected as member variable value:

New File:

a_mode is None
a_blob is None

Deleted File:

b_mode is None
b_blob is None

Working Tree Blobs

When comparing to working trees, the working tree blob will have a null hexsha
as a corresponding object does not yet exist. The mode will be null as well.
But the path will be available though.
If it is listed in a diff the working tree version of the file must
be different to the version in the index or tree, and hence has been modified.

	
a_blob

	

	
a_mode

	

	
b_blob

	

	
b_mode

	

	
deleted_file

	

	
diff

	

	
new_file

	

	
null_hex_sha = '00'

	

	
re_header = <_sre.SRE_Pattern object at 0x17174c0>

	

	
rename_from

	

	
rename_to

	

	
renamed

	
	Returns:

	True if the blob of our diff has been renamed

	
class git.diff.DiffIndex

	Implements an Index for diffs, allowing a list of Diffs to be queried by
the diff properties.

The class improves the diff handling convenience

	
change_type = ('A', 'D', 'R', 'M')

	

	
iter_change_type(change_type)

	
	Return

	iterator yieling Diff instances that match the given change_type

	change_type

	Member of DiffIndex.change_type, namely

‘A’ for added paths

‘D’ for deleted paths

‘R’ for renamed paths

‘M’ for paths with modified data

	
class git.diff.Diffable

	Common interface for all object that can be diffed against another object of compatible type.

	NOTE:

	Subclasses require a repo member as it is the case for Object instances, for practical
reasons we do not derive from Object.

	
class Index

	

	
Diffable.diff(other=<class 'git.diff.Index'>, paths=None, create_patch=False, **kwargs)

	Creates diffs between two items being trees, trees and index or an
index and the working tree.

	other

	Is the item to compare us with.
If None, we will be compared to the working tree.
If Treeish, it will be compared against the respective tree
If Index (type), it will be compared against the index.
It defaults to Index to assure the method will not by-default fail
on bare repositories.

	paths

	is a list of paths or a single path to limit the diff to.
It will only include at least one of the givne path or paths.

	create_patch

	If True, the returned Diff contains a detailed patch that if applied
makes the self to other. Patches are somwhat costly as blobs have to be read
and diffed.

	kwargs

	Additional arguments passed to git-diff, such as
R=True to swap both sides of the diff.

	Returns

	git.DiffIndex

	Note

	Rename detection will only work if create_patch is True.

On a bare repository, ‘other’ needs to be provided as Index or as
as Tree/Commit, or a git command error will occour

Errors

Module containing all exceptions thrown througout the git package,

	
exception git.errors.GitCommandError(command, status, stderr=None)

	Thrown if execution of the git command fails with non-zero status code.

	
exception git.errors.InvalidGitRepositoryError

	Thrown if the given repository appears to have an invalid format.

	
exception git.errors.NoSuchPathError

	Thrown if a path could not be access by the system.

Index

Module containing Index implementation, allowing to perform all kinds of index
manipulations such as querying and merging.

	
class git.index.BaseIndexEntry

	Small Brother of an index entry which can be created to describe changes
done to the index in which case plenty of additional information is not requried.

As the first 4 data members match exactly to the IndexEntry type, methods
expecting a BaseIndexEntry can also handle full IndexEntries even if they
use numeric indices for performance reasons.

	
classmethod from_blob(blob, stage=0)

	
	Returns

	Fully equipped BaseIndexEntry at the given stage

	
mode

	File Mode, compatible to stat module constants

	
path

	

	
sha

	hex sha of the blob

	
stage

	
	Stage of the entry, either:

	0 = default stage
1 = stage before a merge or common ancestor entry in case of a 3 way merge
2 = stage of entries from the ‘left’ side of the merge
3 = stage of entries from the right side of the merge

	Note:

	For more information, see http://www.kernel.org/pub/software/scm/git/docs/git-read-tree.html

	
class git.index.BlobFilter(paths)

	Predicate to be used by iter_blobs allowing to filter only return blobs which
match the given list of directories or files.

The given paths are given relative to the repository.

	
paths

	

	
exception git.index.CheckoutError(message, failed_files, valid_files, failed_reasons)

	Thrown if a file could not be checked out from the index as it contained
changes.

The .failed_files attribute contains a list of relative paths that failed
to be checked out as they contained changes that did not exist in the index.

The .failed_reasons attribute contains a string informing about the actual
cause of the issue.

The .valid_files attribute contains a list of relative paths to files that
were checked out successfully and hence match the version stored in the
index

	
class git.index.IndexEntry

	Allows convenient access to IndexEntry data without completely unpacking it.

Attributes usully accessed often are cached in the tuple whereas others are
unpacked on demand.

See the properties for a mapping between names and tuple indices.

	
ctime

	
	Returns

	Tuple(int_time_seconds_since_epoch, int_nano_seconds) of the
file’s creation time

	
dev

	Device ID

	
classmethod from_base(base)

	
	Returns

	Minimal entry as created from the given BaseIndexEntry instance.
Missing values will be set to null-like values

	base

	Instance of type BaseIndexEntry

	
classmethod from_blob(blob)

	
	Returns

	Minimal entry resembling the given blob objecft

	
gid

	Group ID

	
inode

	Inode ID

	
mtime

	See ctime property, but returns modification time

	
size

	Uncompressed size of the blob

	Note

	Will be 0 if the stage is not 0 (hence it is an unmerged entry)

	
uid

	User ID

	
class git.index.IndexFile(repo, file_path=None)

	Implements an Index that can be manipulated using a native implementation in
order to save git command function calls wherever possible.

It provides custom merging facilities allowing to merge without actually changing
your index or your working tree. This way you can perform own test-merges based
on the index only without having to deal with the working copy. This is useful
in case of partial working trees.

Entries
The index contains an entries dict whose keys are tuples of type IndexEntry
to facilitate access.

	You may read the entries dict or manipulate it using IndexEntry instance, i.e.::

	index.entries[index.get_entries_key(index_entry_instance)] = index_entry_instance

Otherwise changes to it will be lost when changing the index using its methods.

	
S_IFGITLINK = 57344

	

	
add(*args, **kwargs)

	

	
checkout(*args, **kwargs)

	

	
commit(*args, **kwargs)

	

	
diff(*args, **kwargs)

	

	
entries

	

	
classmethod from_tree(repo, *treeish, **kwargs)

	Merge the given treeish revisions into a new index which is returned.
The original index will remain unaltered

	repo

	The repository treeish are located in.

	*treeish

	One, two or three Tree Objects or Commits. The result changes according to the
amount of trees.
If 1 Tree is given, it will just be read into a new index
If 2 Trees are given, they will be merged into a new index using a

two way merge algorithm. Tree 1 is the ‘current’ tree, tree 2 is the ‘other’
one. It behaves like a fast-forward.
If 3 Trees are given, a 3-way merge will be performed with the first tree
being the common ancestor of tree 2 and tree 3. Tree 2 is the ‘current’ tree,
tree 3 is the ‘other’ one

	**kwargs

	Additional arguments passed to git-read-tree

	Returns

	New IndexFile instance. It will point to a temporary index location which
does not exist anymore. If you intend to write such a merged Index, supply
an alternate file_path to its ‘write’ method.

	Note:

	In the three-way merge case, –aggressive will be specified to automatically
resolve more cases in a commonly correct manner. Specify trivial=True as kwarg
to override that.

As the underlying git-read-tree command takes into account the current index,
it will be temporarily moved out of the way to assure there are no unsuspected
interferences.

	
classmethod get_entries_key(*entry)

	
	Returns

	Key suitable to be used for the index.entries dictionary

	entry

	One instance of type BaseIndexEntry or the path and the stage

	
iter_blobs(predicate=<function <lambda> at 0x7f15a84af0c8>)

	
	Returns

	Iterator yielding tuples of Blob objects and stages, tuple(stage, Blob)

	predicate

	Function(t) returning True if tuple(stage, Blob) should be yielded by the
iterator. A default filter, the BlobFilter, allows you to yield blobs
only if they match a given list of paths.

	
merge_tree(*args, **kwargs)

	

	
move(*args, **kwargs)

	

	
path

	
	Returns

	Path to the index file we are representing

	
remove(*args, **kwargs)

	

	
repo

	

	
reset(*args, **kwargs)

	

	
resolve_blobs(iter_blobs)

	Resolve the blobs given in blob iterator. This will effectively remove the
index entries of the respective path at all non-null stages and add the given
blob as new stage null blob.

For each path there may only be one blob, otherwise a ValueError will be raised
claiming the path is already at stage 0.

	Raise

	ValueError if one of the blobs already existed at stage 0

	Returns:

	self

	Note

	You will have to write the index manually once you are done, i.e.
index.resolve_blobs(blobs).write()

	
unmerged_blobs()

	
	Returns

	Iterator yielding dict(path : list(tuple(stage, Blob, ...))), being
a dictionary associating a path in the index with a list containing
sorted stage/blob pairs

	Note:

	Blobs that have been removed in one side simply do not exist in the
given stage. I.e. a file removed on the ‘other’ branch whose entries
are at stage 3 will not have a stage 3 entry.

	
update()

	Reread the contents of our index file, discarding all cached information
we might have.

	Note:

	This is a possibly dangerious operations as it will discard your changes
to index.entries

	Returns

	self

	
version

	

	
write(file_path=None, ignore_tree_extension_data=False)

	Write the current state to our file path or to the given one

	file_path

	If None, we will write to our stored file path from which we have
been initialized. Otherwise we write to the given file path.
Please note that this will change the file_path of this index to
the one you gave.

	ignore_tree_extension_data

	If True, the TREE type extension data read in the index will not
be written to disk. Use this if you have altered the index and
would like to use git-write-tree afterwards to create a tree
representing your written changes.
If this data is present in the written index, git-write-tree
will instead write the stored/cached tree.
Alternatively, use IndexFile.write_tree() to handle this case
automatically

	Returns

	self

	Note

	Index writing based on the dulwich implementation

	
write_tree(missing_ok=False)

	Writes the Index in self to a corresponding Tree file into the repository
object database and returns it as corresponding Tree object.

	missing_ok

	If True, missing objects referenced by this index will not result
in an error.

	Returns

	Tree object representing this index

	
git.index.clear_cache(func)

	Decorator for functions that alter the index using the git command. This would
invalidate our possibly existing entries dictionary which is why it must be
deleted to allow it to be lazily reread later.

	Note

	This decorator will not be required once all functions are implemented
natively which in fact is possible, but probably not feasible performance wise.

	
git.index.default_index(func)

	Decorator assuring the wrapped method may only run if we are the default
repository index. This is as we rely on git commands that operate
on that index only.

Refs

Module containing all ref based objects

	
class git.refs.HEAD(repo, path='HEAD')

	Special case of a Symbolic Reference as it represents the repository’s
HEAD reference.

	
reset(commit='HEAD', index=True, working_tree=False, paths=None, **kwargs)

	Reset our HEAD to the given commit optionally synchronizing
the index and working tree. The reference we refer to will be set to
commit as well.

	commit

	Commit object, Reference Object or string identifying a revision we
should reset HEAD to.

	index

	If True, the index will be set to match the given commit. Otherwise
it will not be touched.

	working_tree

	If True, the working tree will be forcefully adjusted to match the given
commit, possibly overwriting uncommitted changes without warning.
If working_tree is True, index must be true as well

	paths

	Single path or list of paths relative to the git root directory
that are to be reset. This allow to partially reset individual files.

	kwargs

	Additional arguments passed to git-reset.

	Returns

	self

	
class git.refs.Head(repo, path)

	A Head is a named reference to a Commit. Every Head instance contains a name
and a Commit object.

Examples:

>>> repo = Repo("/path/to/repo")
>>> head = repo.heads[0]

>>> head.name
'master'

>>> head.commit
<git.Commit "1c09f116cbc2cb4100fb6935bb162daa4723f455">

>>> head.commit.sha
'1c09f116cbc2cb4100fb6935bb162daa4723f455'

	
checkout(force=False, **kwargs)

	Checkout this head by setting the HEAD to this reference, by updating the index
to reflect the tree we point to and by updating the working tree to reflect
the latest index.

The command will fail if changed working tree files would be overwritten.

	force

	If True, changes to the index and the working tree will be discarded.
If False, GitCommandError will be raised in that situation.

	**kwargs

	Additional keyword arguments to be passed to git checkout, i.e.
b=’new_branch’ to create a new branch at the given spot.

	Returns

	The active branch after the checkout operation, usually self unless
a new branch has been created.

	Note

	By default it is only allowed to checkout heads - everything else
will leave the HEAD detached which is allowed and possible, but remains
a special state that some tools might not be able to handle.

	
classmethod create(repo, path, commit='HEAD', force=False, **kwargs)

	Create a new head.
repo

Repository to create the head in

	path

	The name or path of the head, i.e. ‘new_branch’ or
feature/feature1. The prefix refs/heads is implied.

	commit

	Commit to which the new head should point, defaults to the
current HEAD

	force

	if True, force creation even if branch with that name already exists.

	**kwargs

	Additional keyword arguments to be passed to git-branch, i.e.
track, no-track, l

	Returns

	Newly created Head

	Note

	This does not alter the current HEAD, index or Working Tree

	
classmethod delete(repo, *heads, **kwargs)

	Delete the given heads

	force

	If True, the heads will be deleted even if they are not yet merged into
the main development stream.
Default False

	
rename(new_path, force=False)

	Rename self to a new path

	new_path

	Either a simple name or a path, i.e. new_name or features/new_name.
The prefix refs/heads is implied

	force

	If True, the rename will succeed even if a head with the target name
already exists.

	Returns

	self

	Note

	respects the ref log as git commands are used

	
class git.refs.Reference(repo, path)

	Represents a named reference to any object. Subclasses may apply restrictions though,
i.e. Heads can only point to commits.

	
classmethod create(repo, path, commit='HEAD', force=False)

	Create a new reference.
repo

Repository to create the reference in

	path

	The relative path of the reference, i.e. ‘new_branch’ or
feature/feature1. The path prefix ‘refs/’ is implied if not
given explicitly

	commit

	Commit to which the new reference should point, defaults to the
current HEAD

	force

	if True, force creation even if a reference with that name already exists.
Raise OSError otherwise

	Returns

	Newly created Reference

	Note

	This does not alter the current HEAD, index or Working Tree

	
classmethod iter_items(repo, common_path=None)

	Equivalent to SymbolicReference.iter_items, but will return non-detached
references as well.

	
name

	
	Returns

	(shortest) Name of this reference - it may contain path components

	
object

	Return the object our ref currently refers to

	
class git.refs.RemoteReference(repo, path)

	Represents a reference pointing to a remote head.

	
classmethod delete(repo, *refs, **kwargs)

	Delete the given remote references.

	Note

	kwargs are given for compatability with the base class method as we
should not narrow the signature.

	
remote_head

	
	Returns

	Name of the remote head itself, i.e. master.

NOTE: The returned name is usually not qualified enough to uniquely identify
a branch

	
remote_name

	
	Returns

	Name of the remote we are a reference of, such as ‘origin’ for a reference
named ‘origin/master’

	
class git.refs.SymbolicReference(repo, path)

	Represents a special case of a reference such that this reference is symbolic.
It does not point to a specific commit, but to another Head, which itself
specifies a commit.

A typical example for a symbolic reference is HEAD.

	
commit

	Query or set commits directly

	
classmethod create(repo, path, reference='HEAD', force=False)

	Create a new symbolic reference, hence a reference pointing to another
reference.
repo

Repository to create the reference in

	path

	full path at which the new symbolic reference is supposed to be
created at, i.e. “NEW_HEAD” or “symrefs/my_new_symref”

	reference

	The reference to which the new symbolic reference should point to

	force

	if True, force creation even if a symbolic reference with that name already exists.
Raise OSError otherwise

	Returns

	Newly created symbolic Reference

	Raises OSError

	If a (Symbolic)Reference with the same name but different contents
already exists.

	Note

	This does not alter the current HEAD, index or Working Tree

	
classmethod delete(repo, path)

	Delete the reference at the given path

	repo

	Repository to delete the reference from

	path

	Short or full path pointing to the reference, i.e. refs/myreference
or just “myreference”, hence ‘refs/’ is implied.
Alternatively the symbolic reference to be deleted

	
classmethod from_path(repo, path)

	
	Return

	Instance of type Reference, Head, or Tag
depending on the given path

	
is_detached

	
	Returns

	True if we are a detached reference, hence we point to a specific commit
instead to another reference

	
is_valid()

	
	Returns

	True if the reference is valid, hence it can be read and points to
a valid object or reference.

	
classmethod iter_items(repo, common_path=None)

	Find all refs in the repository

	repo

	is the Repo

	common_path

	Optional keyword argument to the path which is to be shared by all
returned Ref objects.
Defaults to class specific portion if None assuring that only
refs suitable for the actual class are returned.

	Returns

	git.SymbolicReference[], each of them is guaranteed to be a symbolic
ref which is not detached.

List is lexigraphically sorted
The returned objects represent actual subclasses, such as Head or TagReference

	
name

	
	Returns

	In case of symbolic references, the shortest assumable name
is the path itself.

	
path

	

	
ref

	Returns the Reference we point to

	
reference

	Returns the Reference we point to

	
rename(new_path, force=False)

	Rename self to a new path

	new_path

	Either a simple name or a full path, i.e. new_name or features/new_name.
The prefix refs/ is implied for references and will be set as needed.
In case this is a symbolic ref, there is no implied prefix

	force

	If True, the rename will succeed even if a head with the target name
already exists. It will be overwritten in that case

	Returns

	self

	Raises OSError:

	In case a file at path but a different contents already exists

	
repo

	

	
classmethod to_full_path(path)

	

	Returns:	string with a full path name which can be used to initialize

a Reference instance, for instance by using Reference.from_path

	
git.refs.Tag

	alias of TagReference

	
class git.refs.TagReference(repo, path)

	Class representing a lightweight tag reference which either points to a commit
,a tag object or any other object. In the latter case additional information,
like the signature or the tag-creator, is available.

This tag object will always point to a commit object, but may carray additional
information in a tag object:

tagref = TagReference.list_items(repo)[0]
print tagref.commit.message
if tagref.tag is not None:
 print tagref.tag.message

	
commit

	
	Returns

	Commit object the tag ref points to

	
classmethod create(repo, path, ref='HEAD', message=None, force=False, **kwargs)

	Create a new tag reference.

	path

	The name of the tag, i.e. 1.0 or releases/1.0.
The prefix refs/tags is implied

	ref

	A reference to the object you want to tag. It can be a commit, tree or
blob.

	message

	If not None, the message will be used in your tag object. This will also
create an additional tag object that allows to obtain that information, i.e.:

tagref.tag.message

	force

	If True, to force creation of a tag even though that tag already exists.

	**kwargs

	Additional keyword arguments to be passed to git-tag

	Returns

	A new TagReference

	
classmethod delete(repo, *tags)

	Delete the given existing tag or tags

	
tag

	
	Returns

	Tag object this tag ref points to or None in case
we are a light weight tag

Remote

Module implementing a remote object allowing easy access to git remotes

	
class git.remote.FetchInfo(ref, flags, note='', old_commit=None)

	Carries information about the results of a fetch operation of a single head:

info = remote.fetch()[0]
info.ref # Symbolic Reference or RemoteReference to the changed
 # remote head or FETCH_HEAD
info.flags # additional flags to be & with enumeration members,
 # i.e. info.flags & info.REJECTED
 # is 0 if ref is SymbolicReference
info.note # additional notes given by git-fetch intended for the user
info.old_commit # if info.flags & info.FORCED_UPDATE|info.FAST_FORWARD,
 # field is set to the previous location of ref, otherwise None

	
ERROR = 128

	

	
FAST_FORWARD = 64

	

	
FORCED_UPDATE = 32

	

	
HEAD_UPTODATE = 4

	

	
NEW_HEAD = 2

	

	
NEW_TAG = 1

	

	
REJECTED = 16

	

	
TAG_UPDATE = 8

	

	
commit

	
	Returns

	Commit of our remote ref

	
flags

	

	
name

	
	Returns

	Name of our remote ref

	
note

	

	
old_commit

	

	
re_fetch_result = <_sre.SRE_Pattern object at 0x1661100>

	

	
ref

	

	
x = 7

	

	
class git.remote.PushInfo(flags, local_ref, remote_ref_string, remote, old_commit=None, summary='')

	Carries information about the result of a push operation of a single head:

info = remote.push()[0]
info.flags # bitflags providing more information about the result
info.local_ref # Reference pointing to the local reference that was pushed
 # It is None if the ref was deleted.
info.remote_ref_string # path to the remote reference located on the remote side
info.remote_ref # Remote Reference on the local side corresponding to
 # the remote_ref_string. It can be a TagReference as well.
info.old_commit # commit at which the remote_ref was standing before we pushed
 # it to local_ref.commit. Will be None if an error was indicated
info.summary # summary line providing human readable english text about the push

	
DELETED = 64

	

	
ERROR = 1024

	

	
FAST_FORWARD = 256

	

	
FORCED_UPDATE = 128

	

	
NEW_HEAD = 2

	

	
NEW_TAG = 1

	

	
NO_MATCH = 4

	

	
REJECTED = 8

	

	
REMOTE_FAILURE = 32

	

	
REMOTE_REJECTED = 16

	

	
UP_TO_DATE = 512

	

	
flags

	

	
local_ref

	

	
old_commit

	

	
remote_ref

	
	Returns

	Remote Reference or TagReference in the local repository corresponding
to the remote_ref_string kept in this instance.

	
remote_ref_string

	

	
summary

	

	
x = 10

	

	
class git.remote.Remote(repo, name)

	Provides easy read and write access to a git remote.

Everything not part of this interface is considered an option for the current
remote, allowing constructs like remote.pushurl to query the pushurl.

NOTE: When querying configuration, the configuration accessor will be cached
to speed up subsequent accesses.

	
classmethod add(repo, name, url, **kwargs)

	Create a new remote to the given repository
repo

Repository instance that is to receive the new remote

	name

	Desired name of the remote

	url

	URL which corresponds to the remote’s name

	**kwargs

	Additional arguments to be passed to the git-remote add command

	Returns

	New Remote instance

	Raise

	GitCommandError in case an origin with that name already exists

	
config_reader

	
	Returns

	GitConfigParser compatible object able to read options for only our remote.
Hence you may simple type config.get(“pushurl”) to obtain the information

	
config_writer

	
	Return

	GitConfigParser compatible object able to write options for this remote.

	Note

	You can only own one writer at a time - delete it to release the
configuration file and make it useable by others.

To assure consistent results, you should only query options through the
writer. Once you are done writing, you are free to use the config reader
once again.

	
classmethod create(repo, name, url, **kwargs)

	Create a new remote to the given repository
repo

Repository instance that is to receive the new remote

	name

	Desired name of the remote

	url

	URL which corresponds to the remote’s name

	**kwargs

	Additional arguments to be passed to the git-remote add command

	Returns

	New Remote instance

	Raise

	GitCommandError in case an origin with that name already exists

	
fetch(refspec=None, progress=None, **kwargs)

	Fetch the latest changes for this remote

	refspec

	A “refspec” is used by fetch and push to describe the mapping
between remote ref and local ref. They are combined with a colon in
the format <src>:<dst>, preceded by an optional plus sign, +.
For example: git fetch $URL refs/heads/master:refs/heads/origin means
“grab the master branch head from the $URL and store it as my origin
branch head”. And git push $URL refs/heads/master:refs/heads/to-upstream
means “publish my master branch head as to-upstream branch at $URL”.
See also git-push(1).

Taken from the git manual

	progress

	See ‘push’ method

	**kwargs

	Additional arguments to be passed to git-fetch

	Returns

	IterableList(FetchInfo, ...) list of FetchInfo instances providing detailed
information about the fetch results

	Note

	As fetch does not provide progress information to non-ttys, we cannot make
it available here unfortunately as in the ‘push’ method.

	
classmethod iter_items(repo)

	
	Returns

	Iterator yielding Remote objects of the given repository

	
name

	

	
pull(refspec=None, progress=None, **kwargs)

	Pull changes from the given branch, being the same as a fetch followed
by a merge of branch with your local branch.

	refspec

	see ‘fetch’ method

	progress

	see ‘push’ method

	**kwargs

	Additional arguments to be passed to git-pull

	Returns

	Please see ‘fetch’ method

	
push(refspec=None, progress=None, **kwargs)

	Push changes from source branch in refspec to target branch in refspec.

	refspec

	see ‘fetch’ method

	progress

	Instance of type RemoteProgress allowing the caller to receive
progress information until the method returns.
If None, progress information will be discarded

	**kwargs

	Additional arguments to be passed to git-push

	Returns

	IterableList(PushInfo, ...) iterable list of PushInfo instances, each
one informing about an individual head which had been updated on the remote
side.
If the push contains rejected heads, these will have the PushInfo.ERROR bit set
in their flags.
If the operation fails completely, the length of the returned IterableList will
be null.

	
refs

	
	Returns

	IterableList of RemoteReference objects. It is prefixed, allowing
you to omit the remote path portion, i.e.:

remote.refs.master # yields RemoteReference('/refs/remotes/origin/master')

	
classmethod remove(repo, name)

	Remove the remote with the given name

	
rename(new_name)

	Rename self to the given new_name

	Returns

	self

	
repo

	

	
classmethod rm(repo, name)

	Remove the remote with the given name

	
stale_refs

	
	Returns

	IterableList RemoteReference objects that do not have a corresponding
head in the remote reference anymore as they have been deleted on the
remote side, but are still available locally.

The IterableList is prefixed, hence the ‘origin’ must be omitted. See
‘refs’ property for an example.

	
update(**kwargs)

	Fetch all changes for this remote, including new branches which will
be forced in (in case your local remote branch is not part the new remote branches
ancestry anymore).

	kwargs

	Additional arguments passed to git-remote update

	Returns

	self

	
class git.remote.RemoteProgress

	Handler providing an interface to parse progress information emitted by git-push
and git-fetch and to dispatch callbacks allowing subclasses to react to the progress.

	
BEGIN = 1

	

	
COMPRESSING = 8

	

	
COUNTING = 4

	

	
END = 2

	

	
OP_MASK = 28

	

	
STAGE_MASK = 3

	

	
WRITING = 16

	

	
line_dropped(line)

	Called whenever a line could not be understood and was therefore dropped.

	
re_op_absolute = <_sre.SRE_Pattern object at 0x7f15a84d6ca8>

	

	
re_op_relative = <_sre.SRE_Pattern object at 0x172e7e0>

	

	
update(op_code, cur_count, max_count=None, message='')

	Called whenever the progress changes

	op_code

	Integer allowing to be compared against Operation IDs and stage IDs.

Stage IDs are BEGIN and END. BEGIN will only be set once for each Operation
ID as well as END. It may be that BEGIN and END are set at once in case only
one progress message was emitted due to the speed of the operation.
Between BEGIN and END, none of these flags will be set

Operation IDs are all held within the OP_MASK. Only one Operation ID will
be active per call.

	cur_count

	Current absolute count of items

	max_count

	The maximum count of items we expect. It may be None in case there is
no maximum number of items or if it is (yet) unknown.

	message

	In case of the ‘WRITING’ operation, it contains the amount of bytes
transferred. It may possibly be used for other purposes as well.

You may read the contents of the current line in self._cur_line

	
x = 4

	

Repo

	
class git.repo.Repo(path=None)

	Represents a git repository and allows you to query references,
gather commit information, generate diffs, create and clone repositories query
the log.

The following attributes are worth using:

‘working_dir’ is the working directory of the git command, wich is the working tree
directory if available or the .git directory in case of bare repositories

‘working_tree_dir’ is the working tree directory, but will raise AssertionError
if we are a bare repository.

‘git_dir’ is the .git repository directoy, which is always set.

	
DAEMON_EXPORT_FILE = 'git-daemon-export-ok'

	

	
active_branch

	The name of the currently active branch.

	Returns

	Head to the active branch

	
alternates

	Retrieve a list of alternates paths or set a list paths to be used as alternates

	
archive(ostream, treeish=None, prefix=None, **kwargs)

	Archive the tree at the given revision.
ostream

file compatible stream object to which the archive will be written

	treeish

	is the treeish name/id, defaults to active branch

	prefix

	is the optional prefix to prepend to each filename in the archive

	kwargs

	Additional arguments passed to git-archive
NOTE: Use the ‘format’ argument to define the kind of format. Use
specialized ostreams to write any format supported by python

Examples:

>>> repo.archive(open("archive"))
<String containing tar.gz archive>

	Raise

	GitCommandError in case something went wrong

	Returns

	self

	
bare

	
	Returns

	True if the repository is bare

	
blame(rev, file)

	The blame information for the given file at the given revision.

	rev

	revision specifier, see git-rev-parse for viable options.

	Returns

	list: [git.Commit, list: [<line>]]
A list of tuples associating a Commit object with a list of lines that
changed within the given commit. The Commit objects will be given in order
of appearance.

	
branches

	A list of Head objects representing the branch heads in
this repo

	Returns

	git.IterableList(Head, ...)

	
clone(path, **kwargs)

	Create a clone from this repository.

	path

	is the full path of the new repo (traditionally ends with ./<name>.git).

	kwargs

	keyword arguments to be given to the git-clone command

	Returns

	git.Repo (the newly cloned repo)

	
commit(rev=None)

	The Commit object for the specified revision

	rev

	revision specifier, see git-rev-parse for viable options.

	Returns

	git.Commit

	
config_level = ('system', 'global', 'repository')

	

	
config_reader(config_level=None)

	
	Returns

	GitConfigParser allowing to read the full git configuration, but not to write it

The configuration will include values from the system, user and repository
configuration files.

NOTE: On windows, system configuration cannot currently be read as the path is
unknown, instead the global path will be used.

	config_level

	For possible values, see config_writer method
If None, all applicable levels will be used. Specify a level in case
you know which exact file you whish to read to prevent reading multiple files for
instance

	
config_writer(config_level='repository')

	
	Returns

	GitConfigParser allowing to write values of the specified configuration file level.
Config writers should be retrieved, used to change the configuration ,and written
right away as they will lock the configuration file in question and prevent other’s
to write it.

	config_level

	One of the following values
system = sytem wide configuration file
global = user level configuration file
repository = configuration file for this repostory only

	
create_head(path, commit='HEAD', force=False, **kwargs)

	Create a new head within the repository.

For more documentation, please see the Head.create method.

	Returns

	newly created Head Reference

	
create_remote(name, url, **kwargs)

	Create a new remote.

For more information, please see the documentation of the Remote.create
methods

	Returns

	Remote reference

	
create_tag(path, ref='HEAD', message=None, force=False, **kwargs)

	Create a new tag reference.

For more documentation, please see the TagReference.create method.

	Returns

	TagReference object

	
daemon_export

	If True, git-daemon may export this repository

	
delete_head(*heads, **kwargs)

	Delete the given heads

	kwargs

	Additional keyword arguments to be passed to git-branch

	
delete_remote(remote)

	Delete the given remote.

	
delete_tag(*tags)

	Delete the given tag references

	
description

	the project’s description

	
git

	

	
git_dir

	

	
head

	
	Return

	HEAD Object pointing to the current head reference

	
heads

	A list of Head objects representing the branch heads in
this repo

	Returns

	git.IterableList(Head, ...)

	
index

	
	Returns

	IndexFile representing this repository’s index.

	
classmethod init(path=None, mkdir=True, **kwargs)

	Initialize a git repository at the given path if specified

	path

	is the full path to the repo (traditionally ends with /<name>.git)
or None in which case the repository will be created in the current
working directory

	mkdir

	if specified will create the repository directory if it doesn’t
already exists. Creates the directory with a mode=0755.
Only effective if a path is explicitly given

	kwargs

	keyword arguments serving as additional options to the git-init command

Examples:

git.Repo.init('/var/git/myrepo.git',bare=True)

	Returns

	git.Repo (the newly created repo)

	
is_dirty(index=True, working_tree=True, untracked_files=False)

	
	Returns

	True, the repository is considered dirty. By default it will react
like a git-status without untracked files, hence it is dirty if the
index or the working copy have changes.

	
iter_commits(rev=None, paths='', **kwargs)

	A list of Commit objects representing the history of a given ref/commit

	rev

	
revision specifier, see git-rev-parse for viable options.
If None, the active branch will be used.

	paths

	is an optional path or a list of paths to limit the returned commits to
Commits that do not contain that path or the paths will not be returned.

	kwargs

	Arguments to be passed to git-rev-list - common ones are
max_count and skip

Note: to receive only commits between two named revisions, use the
“revA..revB” revision specifier

	Returns

	git.Commit[]

	
iter_trees(*args, **kwargs)

	
	Returns

	Iterator yielding Tree objects

Note: Takes all arguments known to iter_commits method

	
re_author_committer_start = <_sre.SRE_Pattern object at 0x7f15a8536150>

	

	
re_hexsha_only = <_sre.SRE_Pattern object at 0x7f15a8484670>

	

	
re_tab_full_line = <_sre.SRE_Pattern object at 0x7f15a848a660>

	

	
re_whitespace = <_sre.SRE_Pattern object at 0x7f15a84856b8>

	

	
references

	A list of Reference objects representing tags, heads and remote references.

	Returns

	IterableList(Reference, ...)

	
refs

	A list of Reference objects representing tags, heads and remote references.

	Returns

	IterableList(Reference, ...)

	
remote(name='origin')

	
	Return

	Remote with the specified name

	Raise

	ValueError if no remote with such a name exists

	
remotes

	A list of Remote objects allowing to access and manipulate remotes

	Returns

	git.IterableList(Remote, ...)

	
tag(path)

	
	Return

	TagReference Object, reference pointing to a Commit or Tag

	path

	path to the tag reference, i.e. 0.1.5 or tags/0.1.5

	
tags

	A list of Tag objects that are available in this repo

	Returns

	git.IterableList(TagReference, ...)

	
tree(rev=None)

	The Tree object for the given treeish revision

	rev

	is a revision pointing to a Treeish (being a commit or tree)

Examples:

repo.tree(repo.heads[0])

	Returns

	git.Tree

	NOTE

	If you need a non-root level tree, find it by iterating the root tree. Otherwise
it cannot know about its path relative to the repository root and subsequent
operations might have unexpected results.

	
untracked_files

	
	Returns

	list(str,...)

Files currently untracked as they have not been staged yet. Paths
are relative to the current working directory of the git command.

	Note

	ignored files will not appear here, i.e. files mentioned in .gitignore

	
working_dir

	

	
working_tree_dir

	
	Returns

	The working tree directory of our git repository

	Raises AssertionError

	If we are a bare repository

	
git.repo.is_git_dir(d)

	This is taken from the git setup.c:is_git_directory
function.

	
git.repo.touch(filename)

	

Stats

	
class git.stats.Stats(total, files)

	Represents stat information as presented by git at the end of a merge. It is
created from the output of a diff operation.

Example:

c = Commit(sha1)
s = c.stats
s.total # full-stat-dict
s.files # dict(filepath : stat-dict)

stat-dict

A dictionary with the following keys and values:

deletions = number of deleted lines as int
insertions = number of inserted lines as int
lines = total number of lines changed as int, or deletions + insertions

full-stat-dict

In addition to the items in the stat-dict, it features additional information:

files = number of changed files as int

	
files

	

	
total

	

Utils

	
class git.utils.BlockingLockFile(file_path, check_interval_s=0.3, max_block_time_s=9223372036854775807)

	The lock file will block until a lock could be obtained, or fail after
a specified timeout

	
class git.utils.ConcurrentWriteOperation(file_path)

	This class facilitates a safe write operation to a file on disk such that we:

	lock the original file

	write to a temporary file

	rename temporary file back to the original one on close

	unlock the original file

This type handles error correctly in that it will assure a consistent state
on destruction

	
class git.utils.Iterable

	Defines an interface for iterable items which is to assure a uniform
way to retrieve and iterate items within the git repository

	
classmethod iter_items(repo, *args, **kwargs)

	For more information about the arguments, see list_items
Return:

iterator yielding Items

	
classmethod list_items(repo, *args, **kwargs)

	Find all items of this type - subclasses can specify args and kwargs differently.
If no args are given, subclasses are obliged to return all items if no additional
arguments arg given.

Note: Favor the iter_items method as it will

	Returns:

	list(Item,...) list of item instances

	
class git.utils.IterableList(id_attr, prefix='')

	List of iterable objects allowing to query an object by id or by named index:

heads = repo.heads
heads.master
heads['master']
heads[0]

It requires an id_attribute name to be set which will be queried from its
contained items to have a means for comparison.

A prefix can be specified which is to be used in case the id returned by the
items always contains a prefix that does not matter to the user, so it
can be left out.

	
class git.utils.LazyMixin

	Base class providing an interface to lazily retrieve attribute values upon
first access. If slots are used, memory will only be reserved once the attribute
is actually accessed and retrieved the first time. All future accesses will
return the cached value as stored in the Instance’s dict or slot.

	
class git.utils.LockFile(file_path)

	Provides methods to obtain, check for, and release a file based lock which
should be used to handle concurrent access to the same file.

As we are a utility class to be derived from, we only use protected methods.

Locks will automatically be released on destruction

	
class git.utils.SHA1Writer(f)

	Wrapper around a file-like object that remembers the SHA1 of
the data written to it. It will write a sha when the stream is closed
or if the asked for explicitly usign write_sha.

	Note:

	Based on the dulwich project

	
close()

	

	
f

	

	
sha1

	

	
tell()

	

	
write(data)

	

	
write_sha()

	

	
git.utils.join_path(a, *p)

	Join path tokens together similar to os.path.join, but always use
‘/’ instead of possibly ‘’ on windows.

	
git.utils.join_path_native(a, *p)

	As join path, but makes sure an OS native path is returned. This is only
needed to play it safe on my dear windows and to assure nice paths that only
use ‘’

	
git.utils.make_sha(source='')

	A python2.4 workaround for the sha/hashlib module fiasco

	Note

	From the dulwich project

	
git.utils.to_native_path(path)

	

	
git.utils.to_native_path_linux(path)

	

	
git.utils.to_native_path_windows(path)

	

 Copyright Copyright (C) 2008, 2009 Michael Trier and contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	GitPython 0.2.0 Beta documentation

Roadmap

The full list of milestones including associated tasks can be found on lighthouse: http://byronimo.lighthouseapp.com/projects/51787-gitpython/milestones

 Copyright Copyright (C) 2008, 2009 Michael Trier and contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	GitPython 0.2.0 Beta documentation

 Python Module Index

 g

 			

 		
 g	

 	[image: -]
 	
 git	

 	
 	
 git.actor	

 	
 	
 git.cmd	

 	
 	
 git.config	

 	
 	
 git.diff	

 	
 	
 git.errors	

 	
 	
 git.index	

 	
 	
 git.objects.base	

 	
 	
 git.objects.blob	

 	
 	
 git.objects.commit	

 	
 	
 git.objects.tag	

 	
 	
 git.objects.tree	

 	
 	
 git.objects.utils	

 	
 	
 git.refs	

 	
 	
 git.remote	

 	
 	
 git.repo	

 	
 	
 git.stats	

 	
 	
 git.utils	

 Copyright Copyright (C) 2008, 2009 Michael Trier and contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	GitPython 0.2.0 Beta documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	

 	a_blob (git.diff.Diff attribute)

 	a_mode (git.diff.Diff attribute)

 	abspath (git.objects.base.IndexObject attribute)

 	active_branch (git.repo.Repo attribute)

 	Actor (class in git.actor)

 	add() (git.index.IndexFile method)

 	

 	(git.remote.Remote class method)

 	

 	alternates (git.repo.Repo attribute)

 	archive() (git.repo.Repo method)

 	args (git.cmd.Git.AutoInterrupt attribute)

 	author (git.objects.commit.Commit attribute)

 	author_tz_offset (git.objects.commit.Commit attribute)

 	authored_date (git.objects.commit.Commit attribute)

B

 	

 	b_blob (git.diff.Diff attribute)

 	b_mode (git.diff.Diff attribute)

 	bare (git.repo.Repo attribute)

 	BaseIndexEntry (class in git.index)

 	BEGIN (git.remote.RemoteProgress attribute)

 	blame() (git.repo.Repo method)

 	

 	Blob (class in git.objects.blob)

 	blob_id (git.objects.tree.Tree attribute)

 	BlobFilter (class in git.index)

 	blobs (git.objects.tree.Tree attribute)

 	BlockingLockFile (class in git.utils)

 	branches (git.repo.Repo attribute)

C

 	

 	cat_file_all (git.cmd.Git attribute)

 	cat_file_header (git.cmd.Git attribute)

 	change_type (git.diff.DiffIndex attribute)

 	checkout() (git.index.IndexFile method)

 	

 	(git.refs.Head method)

 	CheckoutError

 	clear_cache() (git.cmd.Git method)

 	

 	(in module git.index)

 	clone() (git.repo.Repo method)

 	close() (git.utils.SHA1Writer method)

 	Commit (class in git.objects.commit)

 	commit (git.refs.SymbolicReference attribute)

 	

 	(git.refs.TagReference attribute)

 	(git.remote.FetchInfo attribute)

 	commit() (git.index.IndexFile method)

 	

 	(git.repo.Repo method)

 	commit_id (git.objects.tree.Tree attribute)

 	committed_date (git.objects.commit.Commit attribute)

 	committer (git.objects.commit.Commit attribute)

 	committer_tz_offset (git.objects.commit.Commit attribute)

 	

 	COMPRESSING (git.remote.RemoteProgress attribute)

 	ConcurrentWriteOperation (class in git.utils)

 	config_level (git.repo.Repo attribute)

 	config_reader (git.remote.Remote attribute)

 	config_reader() (git.repo.Repo method)

 	config_writer (git.remote.Remote attribute)

 	config_writer() (git.repo.Repo method)

 	count() (git.objects.commit.Commit method)

 	COUNTING (git.remote.RemoteProgress attribute)

 	create() (git.refs.Head class method)

 	

 	(git.refs.Reference class method)

 	(git.refs.SymbolicReference class method)

 	(git.refs.TagReference class method)

 	(git.remote.Remote class method)

 	create_from_tree() (git.objects.commit.Commit class method)

 	create_head() (git.repo.Repo method)

 	create_remote() (git.repo.Repo method)

 	create_tag() (git.repo.Repo method)

 	ctime (git.index.IndexEntry attribute)

D

 	

 	daemon_export (git.repo.Repo attribute)

 	DAEMON_EXPORT_FILE (git.repo.Repo attribute)

 	dashify() (in module git.cmd)

 	data (git.objects.base.Object attribute)

 	data_stream (git.objects.base.Object attribute)

 	default_index() (in module git.index)

 	DEFAULT_MIME_TYPE (git.objects.blob.Blob attribute)

 	delete() (git.refs.Head class method)

 	

 	(git.refs.RemoteReference class method)

 	(git.refs.SymbolicReference class method)

 	(git.refs.TagReference class method)

 	delete_head() (git.repo.Repo method)

 	delete_remote() (git.repo.Repo method)

 	delete_tag() (git.repo.Repo method)

 	

 	DELETED (git.remote.PushInfo attribute)

 	deleted_file (git.diff.Diff attribute)

 	description (git.repo.Repo attribute)

 	dev (git.index.IndexEntry attribute)

 	Diff (class in git.diff)

 	diff (git.diff.Diff attribute)

 	diff() (git.diff.Diffable method)

 	

 	(git.index.IndexFile method)

 	Diffable (class in git.diff)

 	Diffable.Index (class in git.diff)

 	DiffIndex (class in git.diff)

E

 	

 	END (git.remote.RemoteProgress attribute)

 	entries (git.index.IndexFile attribute)

 	

 	ERROR (git.remote.FetchInfo attribute)

 	

 	(git.remote.PushInfo attribute)

 	execute() (git.cmd.Git method)

F

 	

 	f (git.utils.SHA1Writer attribute)

 	FAST_FORWARD (git.remote.FetchInfo attribute)

 	

 	(git.remote.PushInfo attribute)

 	fetch() (git.remote.Remote method)

 	FetchInfo (class in git.remote)

 	files (git.stats.Stats attribute)

 	flags (git.remote.FetchInfo attribute)

 	

 	(git.remote.PushInfo attribute)

 	

 	FORCED_UPDATE (git.remote.FetchInfo attribute)

 	

 	(git.remote.PushInfo attribute)

 	from_base() (git.index.IndexEntry class method)

 	from_blob() (git.index.BaseIndexEntry class method)

 	

 	(git.index.IndexEntry class method)

 	from_path() (git.refs.SymbolicReference class method)

 	from_tree() (git.index.IndexFile class method)

G

 	

 	get_entries_key() (git.index.IndexFile class method)

 	get_object_data() (git.cmd.Git method)

 	get_object_header() (git.cmd.Git method)

 	get_object_type_by_name() (in module git.objects.utils)

 	gid (git.index.IndexEntry attribute)

 	Git (class in git.cmd)

 	git (git.repo.Repo attribute)

 	git.actor (module)

 	Git.AutoInterrupt (class in git.cmd)

 	git.cmd (module)

 	git.config (module)

 	git.diff (module)

 	git.errors (module)

 	git.index (module)

 	

 	git.objects.base (module)

 	git.objects.blob (module)

 	git.objects.commit (module)

 	git.objects.tag (module)

 	git.objects.tree (module)

 	git.objects.utils (module)

 	git.refs (module)

 	git.remote (module)

 	git.repo (module)

 	git.stats (module)

 	git.utils (module)

 	git_dir (git.repo.Repo attribute)

 	GitCommandError

 	GitConfigParser (in module git.config)

H

 	

 	HEAD (class in git.refs)

 	Head (class in git.refs)

 	head (git.repo.Repo attribute)

 	

 	HEAD_UPTODATE (git.remote.FetchInfo attribute)

 	heads (git.repo.Repo attribute)

I

 	

 	index (git.repo.Repo attribute)

 	IndexEntry (class in git.index)

 	IndexFile (class in git.index)

 	IndexObject (class in git.objects.base)

 	init() (git.repo.Repo class method)

 	inode (git.index.IndexEntry attribute)

 	InvalidGitRepositoryError

 	is_detached (git.refs.SymbolicReference attribute)

 	is_dirty() (git.repo.Repo method)

 	is_git_dir() (in module git.repo)

 	

 	is_valid() (git.refs.SymbolicReference method)

 	iter_blobs() (git.index.IndexFile method)

 	iter_change_type() (git.diff.DiffIndex method)

 	iter_commits() (git.repo.Repo method)

 	iter_items() (git.objects.commit.Commit class method)

 	

 	(git.refs.Reference class method)

 	(git.refs.SymbolicReference class method)

 	(git.remote.Remote class method)

 	(git.utils.Iterable class method)

 	iter_parents() (git.objects.commit.Commit method)

 	iter_trees() (git.repo.Repo method)

 	Iterable (class in git.utils)

 	IterableList (class in git.utils)

J

 	

 	join_path() (in module git.utils)

 	

 	join_path_native() (in module git.utils)

L

 	

 	LazyMixin (class in git.utils)

 	line_dropped() (git.remote.RemoteProgress method)

 	list_items() (git.utils.Iterable class method)

 	

 	local_ref (git.remote.PushInfo attribute)

 	LockFile (class in git.utils)

M

 	

 	make_sha() (in module git.utils)

 	merge_tree() (git.index.IndexFile method)

 	message (git.objects.commit.Commit attribute)

 	

 	(git.objects.tag.TagObject attribute)

 	mime_type (git.objects.blob.Blob attribute)

 	

 	mode (git.index.BaseIndexEntry attribute)

 	

 	(git.objects.base.IndexObject attribute)

 	move() (git.index.IndexFile method)

 	mtime (git.index.IndexEntry attribute)

N

 	

 	name (git.objects.base.IndexObject attribute)

 	

 	(git.refs.Reference attribute)

 	(git.refs.SymbolicReference attribute)

 	(git.remote.FetchInfo attribute)

 	(git.remote.Remote attribute)

 	name_email_regex (git.actor.Actor attribute)

 	name_only_regex (git.actor.Actor attribute)

 	name_rev (git.objects.commit.Commit attribute)

 	new() (git.objects.base.Object class method)

 	new_file (git.diff.Diff attribute)

 	NEW_HEAD (git.remote.FetchInfo attribute)

 	

 	(git.remote.PushInfo attribute)

 	

 	NEW_TAG (git.remote.FetchInfo attribute)

 	

 	(git.remote.PushInfo attribute)

 	NO_MATCH (git.remote.PushInfo attribute)

 	NoSuchPathError

 	note (git.remote.FetchInfo attribute)

 	null_hex_sha (git.diff.Diff attribute)

 	NULL_HEX_SHA (git.objects.base.Object attribute)

O

 	

 	Object (class in git.objects.base)

 	object (git.objects.tag.TagObject attribute)

 	

 	(git.refs.Reference attribute)

 	

 	old_commit (git.remote.FetchInfo attribute)

 	

 	(git.remote.PushInfo attribute)

 	OP_MASK (git.remote.RemoteProgress attribute)

P

 	

 	parents (git.objects.commit.Commit attribute)

 	parse_actor_and_date() (in module git.objects.utils)

 	path (git.index.BaseIndexEntry attribute)

 	

 	(git.index.IndexFile attribute)

 	(git.objects.base.IndexObject attribute)

 	(git.refs.SymbolicReference attribute)

 	paths (git.index.BlobFilter attribute)

 	proc (git.cmd.Git.AutoInterrupt attribute)

 	

 	ProcessStreamAdapter (class in git.objects.utils)

 	pull() (git.remote.Remote method)

 	push() (git.remote.Remote method)

 	PushInfo (class in git.remote)

R

 	

 	re_author_committer_start (git.repo.Repo attribute)

 	re_fetch_result (git.remote.FetchInfo attribute)

 	re_header (git.diff.Diff attribute)

 	re_hexsha_only (git.repo.Repo attribute)

 	re_op_absolute (git.remote.RemoteProgress attribute)

 	re_op_relative (git.remote.RemoteProgress attribute)

 	re_tab_full_line (git.repo.Repo attribute)

 	re_whitespace (git.repo.Repo attribute)

 	ref (git.refs.SymbolicReference attribute)

 	

 	(git.remote.FetchInfo attribute)

 	Reference (class in git.refs)

 	reference (git.refs.SymbolicReference attribute)

 	references (git.repo.Repo attribute)

 	refs (git.remote.Remote attribute)

 	

 	(git.repo.Repo attribute)

 	REJECTED (git.remote.FetchInfo attribute)

 	

 	(git.remote.PushInfo attribute)

 	Remote (class in git.remote)

 	remote() (git.repo.Repo method)

 	REMOTE_FAILURE (git.remote.PushInfo attribute)

 	remote_head (git.refs.RemoteReference attribute)

 	

 	remote_name (git.refs.RemoteReference attribute)

 	remote_ref (git.remote.PushInfo attribute)

 	remote_ref_string (git.remote.PushInfo attribute)

 	REMOTE_REJECTED (git.remote.PushInfo attribute)

 	RemoteProgress (class in git.remote)

 	RemoteReference (class in git.refs)

 	remotes (git.repo.Repo attribute)

 	remove() (git.index.IndexFile method)

 	

 	(git.remote.Remote class method)

 	rename() (git.refs.Head method)

 	

 	(git.refs.SymbolicReference method)

 	(git.remote.Remote method)

 	rename_from (git.diff.Diff attribute)

 	rename_to (git.diff.Diff attribute)

 	renamed (git.diff.Diff attribute)

 	Repo (class in git.repo)

 	repo (git.index.IndexFile attribute)

 	

 	(git.objects.base.Object attribute)

 	(git.refs.SymbolicReference attribute)

 	(git.remote.Remote attribute)

 	reset() (git.index.IndexFile method)

 	

 	(git.refs.HEAD method)

 	resolve_blobs() (git.index.IndexFile method)

 	rm() (git.remote.Remote class method)

S

 	

 	S_IFGITLINK (git.index.IndexFile attribute)

 	sha (git.index.BaseIndexEntry attribute)

 	

 	(git.objects.base.Object attribute)

 	sha1 (git.utils.SHA1Writer attribute)

 	SHA1Writer (class in git.utils)

 	sha_to_hex() (in module git.objects.tree)

 	size (git.index.IndexEntry attribute)

 	

 	(git.objects.base.Object attribute)

 	stage (git.index.BaseIndexEntry attribute)

 	STAGE_MASK (git.remote.RemoteProgress attribute)

 	

 	stale_refs (git.remote.Remote attribute)

 	Stats (class in git.stats)

 	stats (git.objects.commit.Commit attribute)

 	stream_data() (git.objects.base.Object method)

 	summary (git.objects.commit.Commit attribute)

 	

 	(git.remote.PushInfo attribute)

 	SymbolicReference (class in git.refs)

 	symlink_id (git.objects.tree.Tree attribute)

T

 	

 	tag (git.objects.tag.TagObject attribute)

 	

 	(git.refs.TagReference attribute)

 	Tag (in module git.refs)

 	tag() (git.repo.Repo method)

 	TAG_UPDATE (git.remote.FetchInfo attribute)

 	tagged_date (git.objects.tag.TagObject attribute)

 	tagger (git.objects.tag.TagObject attribute)

 	tagger_tz_offset (git.objects.tag.TagObject attribute)

 	TagObject (class in git.objects.tag)

 	TagReference (class in git.refs)

 	tags (git.repo.Repo attribute)

 	tell() (git.utils.SHA1Writer method)

 	to_full_path() (git.refs.SymbolicReference class method)

 	to_native_path() (in module git.utils)

 	to_native_path_linux() (in module git.utils)

 	

 	to_native_path_windows() (in module git.utils)

 	total (git.stats.Stats attribute)

 	touch() (in module git.repo)

 	transform_kwargs() (git.cmd.Git method)

 	Traversable (class in git.objects.utils)

 	traverse() (git.objects.tree.Tree method)

 	

 	(git.objects.utils.Traversable method)

 	Tree (class in git.objects.tree)

 	tree (git.objects.commit.Commit attribute)

 	tree() (git.repo.Repo method)

 	tree_id (git.objects.tree.Tree attribute)

 	trees (git.objects.tree.Tree attribute)

 	type (git.objects.base.Object attribute)

 	

 	(git.objects.blob.Blob attribute)

 	(git.objects.commit.Commit attribute)

 	(git.objects.tag.TagObject attribute)

 	(git.objects.tree.Tree attribute)

 	TYPES (git.objects.base.Object attribute)

U

 	

 	uid (git.index.IndexEntry attribute)

 	unmerged_blobs() (git.index.IndexFile method)

 	untracked_files (git.repo.Repo attribute)

 	

 	UP_TO_DATE (git.remote.PushInfo attribute)

 	update() (git.index.IndexFile method)

 	

 	(git.remote.Remote method)

 	(git.remote.RemoteProgress method)

V

 	

 	version (git.index.IndexFile attribute)

W

 	

 	wait() (git.cmd.Git.AutoInterrupt method)

 	working_dir (git.cmd.Git attribute)

 	

 	(git.repo.Repo attribute)

 	working_tree_dir (git.repo.Repo attribute)

 	write() (git.index.IndexFile method)

 	

 	(git.utils.SHA1Writer method)

 	

 	write_sha() (git.utils.SHA1Writer method)

 	write_tree() (git.index.IndexFile method)

 	WRITING (git.remote.RemoteProgress attribute)

X

 	

 	x (git.remote.FetchInfo attribute)

 	

 	(git.remote.PushInfo attribute)

 	(git.remote.RemoteProgress attribute)

 Copyright Copyright (C) 2008, 2009 Michael Trier and contributors.
 Created using Sphinx 1.2.2.

 _static/up-pressed.png

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		GitPython 0.2.0 Beta documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright Copyright (C) 2008, 2009 Michael Trier and contributors.
 Created using Sphinx 1.2.2.

_static/file.png

_static/down-pressed.png

_static/minus.png

_static/up.png

_static/plus.png

_static/ajax-loader.gif

_static/down.png

_static/comment-close.png

_static/comment-bright.png

